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ABSTRACT

This report analyzes and integrates the findings of NASA-sponsored

studies on the welding of aluminum alloys. It covers information received

through 15 February 1967. On this basis, nine of the eleven research programs

currently sponsored by NASA on welding aluminum are covered. The following

subjects are discussed:

1) Effects of shielding-gas contamination on porosity

2) Effects of base- and filler-metal contamination on porosity

3) Mechanisms of porosity formation

4) Scavenger elements to reduce porosity

5) Effects of porosity on weld-joint performance

6) Time-temperature effects and control

7) Transferability of welding parameters in the gas tungsten-arc

process

8) Development of arc shaper and puddle stirrer

9) Material preparation.

Major findings obtained in the nine programs on welding aluminum are

described, analyzed, and integrated. Recommendations are presented for

future work and for application of the integrated findings to the fabrication of
structural components of Saturn V rockets.
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FOREWORD

This is a report of a program to analyze and integrate data generated

from NASA-sponsored studies on the welding of aluminum alloys.

Information in this report comes from the Marshall Space Flight Center,

from visits to the Lockheed-Georgia Company, Marietta, Georgia; the

Martin Company, Denver, Colorado; the Douglas Missile and Space Systems

Division, Santa Monica, California; Harvey Aluminum, Incorporated,

Torrance, California; The Boeing Company, Seattle, Washington; the

Illinois Institute of Technology Research Institute, Chicago, Illinois; and the

Air Reduction Company, Incorporated, Murray Hill, New Jersey.
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Section l. INTRODUCTION

Although this report is concerned only with the welding of aluminum

structures, it is important to understand that this is only one phase of the

fabrication of a complex structure such as the Saturn V rocket, and must even-

tually be related to a much greater whole. The Saturn V structure requires

a very complex system of design and fabrication composed of many phases.

These phases include design, material selection, stress analysis, cutting,

machining, forming, joining, and inspection. Each phase is closely related to

and dependent upon the others. For example, the material selection must be

made not only on the basis of mechanical properties but also with regard to

forming and joining the material. The design must be made so that a structure

with sufficient reliability can be fabricated with a tolerable dimensional

accuracy. There are also many factors within each phase of design and

fabrication. For example, the quality of a weld depends upon such factors as

the cleanliness of the metal surface, pyrity of the shielding gas, and the welding

conditions. To improve the structural reliability of a space vehicle, we must

know more about each phase, the relationship of factors within it, the relation-

ship of any one phase to other phases, and, ultimately, the importance of each

phase to the final product. With this knowledge, time and money can be spent

most effectively to improve the product. NASA has recognized the importance

of conducting several aluminum welding studies and integrating the results in

this report. It is equally important that studies of the phases outlined above

be made and that the results be integrated in a like manner.

Welding is used extensively in the fabrication of space vehicles. NASA

has selected high-strength aluminum alloys, primarily 2014 and 2219. Table I

gives some characteristics of these alloys. Gas tungsten-arc (GTA) and

gas metal-arc (GMA) processes are being used for the fabrication of some

components, including fuel tanks. However, fusion welding of high-strength,

heat-treated aluminum alloys presents the following reliability problems:

1) Possibility of obtaining defects in welds

2) Undesirable thermal effects due to welding heat

Aluminum alloys are subject to certain types of weld defects, especially

porosity. Every attempt should be made to minimize porosity, but it has

become especially important because of the limited effectiveness of presently

available inspection techniques. Among various nondestructive inspection

techniques, visual and X-ray (and sometimes ultrasonic) inspections are

used to examine structural welds. However, none of these techniques is

completely satisfactory. The usefulness of visual inspection is limited. X-ray



TABLE I. CHARACTERISTICSOF 2014AND 2219ALUMINUM ALLOYS

2014ALLOY
i

Type
I

Nominal

composition

Availability

Typical

physical

properties

Typical
mechanical

properties

Wrought, heat treatable aluminum alloy

A1-4.4Cu-0.8Mn-0.8Si-0.4Mg

Bare and clad sheet and plate, rod, bar, wire, tube,

extruded shapes, forgings and forging stock

Density

Thermal

conductivity

Thermal

expansion

Specific heat

Electrical

resistivity

Ultimate

tensile

strength

0.2 % Tensile

yield

strength

Elongation

( 2-in. )

Modulus

of elasticity

(tension)

2. 815 g/cm 3 at RT

0.46 cal/cm sec °C (O temper)

0.37 cal/cm sec °C (T6 temper)

(20-100C), 22.5 x 10 -6 in./in./°C

0.23 cal/g cm at 100°C

3.45 p ohm-cm at RT (O temper)

4.31 p ohm-cm at RT ( T6 temper)

27,000 psi (O temper)

70,000 psi (T6 temper)

14, 000 psi (O temper)

60,000 psi (T6 temper)

18 % (O temper)

13% (T6 temper)

I0.6 × 10 6 psi



TABLE I. (Continued)

Fabrication
characteristics

iComments

Weldability

Formability

Machinability

Good (fusion and resistance methods

if proper procedures are used

Good in the annealed condition

difficult to form in T6 temper

Good in the T6 temper

A high-strength aluminum alloy which is often used for

heavy-duty structures

2219 ALLOY

Type Wrought, heat treatable aluminum alloy

:Nominal A1-6.3Cu-0.3Mn-0.18Zr-0.1V-0.06T1

composition

Availability Bare and clad sheet, plate, forgings, extrusions, drawn

tube, rod and bar

DensityTypical

physical

properties

Typical

mechanical

properties

Thermal

conductivity

Thermal

expansion

Electrical

resistivity

Ultimate

tensile

strength

0.2 % Tensile

yield

strength

2.82 g/cm 3 at RT

0.41 cal/cm sec °C (O temper)

0.30 cal/cm sec °C (T62 temper)

(20-100°C), 22.3in./in./°C

3.90 # ohm-cm at RT (O temper)

5.23 p ohm-cm at RT (T62 temper)

25,000 psi (O temper)

68,000 psi (T87 temper)

10,000 psi (O temper)

56,000 psi (T87 temper)

3



TABLE I. Concluded)

Fabrication
characteristics

Comments

Elongation

( 2-in. )

Modulus

of elasticity

Weldability

Formability

Machinability

20% (O temper)

10% (T87 temper)

10.6 × 106 psi

Excellent (fusion and resistance

methods)

Slightly superior to 2014 alloy

Good in annealed condition

Alloy has good mechanical properties at cryogenic tem-

peratures and at elevated temperatures up to 600 ° F.

Recommended for applications requiring high-strength

weldments.

inspection is usually two-dimensional, and three-dimensional distributions of
defects are not determined.

The intense heat generated by the welding arc causes various undesirable

thermal effects. Metallurgical structures of the weld metal and the heat-

affected zone differ from those of the original base metal. A welded joint is

composed of many zones with different structures and mechanical properties.

It is known that the ultimate tensile strength of a welded joint in high-strength

heat-treated aluminum alloy decreases with increasing heat input, i.e., the

amount of heat energy supplied per inch of weld length. Welding heat also

causes residual stresses and distortion. Because there is no reliable non-

destructive technique to determine the strength of a welded structure, it is

essential to control the manufacturing process so that the fluctuation in

behavior of welded structures can be minimized and limited to a certain range.

The ultimate purpose of the NASA welding research program is to

improve the performance and reliability of space vehicles. This can be done

by investigating each of the problems involved and then determining how best

to utilize the information obtained. Results obtained in some of the investigations

may be contradictory; for example, a welding process using a certain set of

parameters found to be very effective in reducing porosity may be undesirable

because of large thermal effe.cts. It is important, therefore, to integrate

results obtained in the individual investigations. Such integration of data will

provide a basis of recommendations for design and fabrication of space vehicles.

4



The welding process is a dynamic whole, an entirety. It is a series of
interrelated, interdependent events. We are not able to minutely analyze the
dynamic whole, but must arbitrarily select restricted areas for study, which
might be considered fragments of the map of welding. The studies listed herein
are such fragments which collectively represent a major portion of welding
technology. Thetime comes, however, whenthe fragments must be integrated
andthe whole map constructed, if we are to understand welding and if we are
to formulate process control. The present report is a first step in the inte-
gration of individual, independentstudies.

Process control is the final objective: quantitative limits of the major
variables which canbe expressed in manufacturing specifications. Such
specifications will supplement inspection in the assuranceof weld-joint
reliability.



Section I1,. OBJECTIVE AND PROCEDURES OF THE PRESENT STUDY

1. Objective

The objective of the present study is to analyze and integrate

several interrelated studies conducted by various organizations for Marshall

Space Flight Center. These studies are intended to improve current aluminum

welding techniques. The studies which are to be or have been integrated are

listed below:

1) Gas Analysis Study by The Boeing Company under Contract

NAS8-20168 - a quantitative study of the role of gas contaminants
as a source of defects in welds.

2) Base Metal Studies (Phases I and II) by Battelle Memorial

Institute under Contracts NAS8-11445 and NAS8-20303 - a study

of effects of chemistry, internal and external impurities, and

hydrogen content of base metal on porosity in welds.

3) Mechanisms of Porosity by Douglas Aircraft Company under

Contract NAS8-11332 - an effortto find methods of porosity

arrest and inhibitionthrough a study of how itnucleates and

grows.

4) Gas Scavenger Study by Southern Research Institute under Contract

NAS8-20307 - a study seeking an element with affinity for porosity-

forming gases that would tie them up in a harmless way or wash

them out of the molten pool.

5) Defects Versus Joint Performance by Martin Company under

Contract NAS8-11335 - a study to formulate realistic weld quality

standards by quantitatively analyzing the effect of defects on weld

strength.

6) Time-Temperature Control by Harvey Aluminum, Incorporated,

under Contract NAS8-11930 - a study for formulating methods of

producing and controlling time-temperature gradients in fusion

welding that will yield optimum responses, i.e., ultimate strength,

yield strength, elongation, X-ray quality, etc.

6



7) Data Transfer by Lockheed-Georgia Company under Contract

NAS8-11435 - a study consisting of arranging welding variables

in order of importance and devising instrumentation and control that

will insure accurate transfer from laboratory to production.

8) Arc Shaper and Molten Puddle Stirrer by Air Reduction Company

under Contract NAS8-11954 - a study to increase power density of

the GTA arc and agitation of the molten puddle.

9) Material Preparation by Illinois Institute of Technology Research

Institute under Contract NAS8-20363 - a study to identify the surface

of the material to be welded, i.e., identifying organic material,

hydrogen, etc.

10) Welding Power Supply Output Wave Shape on Weld Joint Performance

by Air Reduction Company under Contract NAS8-20338 - an investi-

gation of the effect of AC, DC, and a combination of AC and DC,

various wave shapes, and frequencies on the weld joint.

il) Nonvacuum Electron-Beam Welding by Westinghouse Electric

Corporation under Contract NAS8-11929 - analysis of welding

parameters, energy input, and shielding gas with defect level and

mechanical properties as major responses.

This report also integrates information generated in studies, conducted

at Marshall Space Flight Center, of the time-temperature relationship in

welding aluminum alloys.

The present report covers information received up to 15 February 1967.

2. Procedures of the Present Study

The major source of information used for the present study was

documents supplied by the Marshall Space Flight Center, Manufacturing

Engineering Laboratory, NASA. These documents include (1) proposals,

monthly reports, and interim, summary, and/or final reports prepared for

the above 11 NASA-sponsored programs, and (2) reports and memorandums

on the NASA in-house program on time-temperature relationship.

On the basis of the progress of the NASA-sponsored research programs,

as of 15 February 1967, it was decided that the present report should cover

thoroughly the following nine programs:

7



1) gas analysis

2) base metal

3) mechanisms of porosity

4) gas scavenger

5) defects versus joint performance

6) time-temperature control

7) data transfer

8) arc shaper andmolten puddle stirrer

9) material preparation .

The remaining studies had not been completed and will be covered in future
reports.

Titles of the final reports andthe interim report on the nine programs
covered in this report are listed in Literature Cited. 3-14 Information on
welding time-temperature effect has been supplied by the Marshall Space
Flight Center, NASA.15

Conclusions given in the final reports and the interim reports on the
nine programs are summarized in the Appendix. These conclusions were drawn
by the investigators working on the programs and do not necessarily agree
with the conclusions and opinions given in the main body of the present report.



Sectionllll. GENERAL DESCRIPTION OF THE NASA RESEARCH

PROGRAMS ON ALUMINUM WELDLING

Figure 1 illustrates the relationships between problems in fusion

welding of high-strength heat-treated aluminum alloys and the current NASA-

sponsored research programs. The ultimate objective of the whole NASA effort

is to develop a system of controlling weld quality to improve performance and

reliability of space vehicles. Many problems need to be solved before this

ultimate objective is reached. The current programs are directed toward the

following three major problems:

1) Reduction of porosity and its effect on the behavior of weldments

2) Reduction of thermal effects of welding on the behavior of weldments

3) Improvements of weld-joint properties.

1. Weld Porosity

Weld porosity has been a major problem in the use of high-strength

aluminum alloys for structural components of space vehicles that must operate

under severe loading conditions. Many of the current NASA-sponsored

programs are concerned with the porosity problem. Subjects that are being

investigated or considered for future investigation include:

1) Reduction of porosity

a) Sources of porosity. What causes the porosity contamination

attributed to shielding gas, unclean joint surfaces, improper

composition of base plate or filler metal? How can these

causes be removed? How can we find whether these causes

are removed?

b) Mechanisms of porosity. How is porosity formed?

c) Effects of welding parameters and processes. How do welding

parameters affect the size and distribution of porosity? What

combinations of welding parameters produce less porosity--

high current and low travel speed or low current and high

travel speed? Which welding process is suitable for reducing

porosity--GTA, GMA, or a new process? What are the effects

of power supply--D-C or A-C, straight or reverse polarity?



Pr_ECEDING PAGE B[AE_K_OT_FiI_I_L_.

ULTIMATE OBJECTIVE PROBLEMS

CONTROL WELD

QUALITY TO

IMPROVE

PERFORMANCE
AND RELIABILITY

OF SPACE VEHICLES

REDUCTION OF I
POROSITY AND ITS

EFFECT

REDUCTION OF THERMAL IEFFECTS OF WELDING

IMPROVEMENT OF WELD°OUALITY CONTROL

"_ O_THER_PROB_L E_MSJ

_REDUCTION OF J_.__
POROSITY /

SOURCES OF

POROSI TY

MECHANISMS OF POROSI'

EFFECTS OF WELDING PAl

AND PROCESSES ON POF

METALLURGICAL CONTR

POROSITY

REDUCTION OF PORO',

BY SOME DEVICES

__REDUCTION OF EFFECTS__OF POROSITY t INVESTIGATION OF i
OF POROSITY I

MECHANICAL BEH

INSPECTION

J REPAIR 1
t J

STUDY OF EFFECTS OF THERMAL EFFECTS I"--

METHODS OFIMPROVING MECHANICAL PROPER1

IEFFECTS OF REPAI(S]

RESIDUAL STRESSES AND DISTORTIONS ]

!
_OTHER PROBLEMS I

TRANSFERABILITY OF SETUP PARAMETERS
OTHER PROBLEMS__

FIGURE i. RELATIONSHIPS BETWEEN

ALUMINUM ALLOYS AND THE CURRE_

/!



NASA CONTRACTS
AIMED AT THE

SUBJECT

.DINGoGAS CONTAMINATION J

ACE CONTAMINATION J

, AND FILLERoMETALI_I- _
:OM POSI T ION I I I

'4
RESEARCH ON EXPERI- _

MENTAL PLATES I
RESEARCH ON COMMER- J

CIAL PLATES [

NAS8o20168 - -- -

NAS8-20363 -- - -

NAS8-11445

NAS8-20303

NAS8-11332- - --

',AMETER

OSITY

3L OF

;ITY

J_. EFFECTS OF WELDING PARAMETERS t

EFFECTS OF WELDING POWER SUPPLY _-_

I_Lr-_ER-_O_L--_ 7

_rl_R-c_.,_ ;.o-_,o_-_.o_u_o_E_''_i--

)NIFFECTS i""_,VIOR

NAS8-20338

NAS8.20307

NAS8o11954

DUCTILE FRACTURES UNDER STATIC LOADING I" NAS8-11335---

ADDITIONAL NASA
CONTRACTS RELATED

TO THE SUBJECT

N AS8ol 1332,11445

NAS8_20168

NAS8-11445

NAS8o11332

N AS8°11930

NAS8o20168

JFATiGUE FRACTURESJ

I
[ FRACTURES UNDER IMPACT LOADING j

JLBRIT'n-E FRACTURES AT VERYLOWTEMPERATUREIj

XoRAY INSPECTION STANDARE_

NAS8o11335,20168

NAS8.11335

EFFECTS OF WELDING PARAMETERS ON WELD STRENGTHJ----o_-.ER_R_BTE_S7

OFWE,.O t'I-IC'OOE,,CCOO .,,OI

II us.:OF,RcS.,PERI
L_O-TI_ ER M'E¥ H-OD_I

MSFC PROGRAM--NAS8.11435

NAS8-11930

N AS8oi 1929

NAS8o11954

N AS8ol 1435

PROBLEMS IN FUSION WELDING HIGH-STRENGTH HEAT-TREATED

IT NASA-SPONSORED RESEARCH PROGRAMS



d) Metallurgical control of porosity. Is there any way to reduce

porosity metallurgically? Should we cool the molten metal

faster or more slowly? Is it feasible to add some elements to

reduce hydrogen by chemical reactions in the molten metal?

e) Reduction of porosity by mechanical devices. Is it feasible to

reduce porosity by such a device as a molten puddle stirrer?

2) Effects of porosity

a_ Investigation of effects of porosity on mechanical behavior.

How does porosity affect the mechanical behavior of weldments

under static, impact, or repeated loading? What about the

effects of porosity on the strength of welds at very low or high

temperatures? How much porosity can be accepted under what
conditions?

b) Inspection. How can we inspect for porosity? How can we set

an acceptance standard?

c) Repair. If a weld contains porosity that is unacceptable, how

can the weld be repaired with minimum detrimental effects?

Many of these questions are being answered in the current programs.

Programs at Boeing, Battelle, and IITRI were aimed at studying sources of

porosity. The objective of the Boeing work was to establish a quantitative

relationship between atmospheric contaminants in the arc-shielding medium and

the magnitude and frequency of porosity in 2219-T87 aluminum GTA weldments.

Welds were made in an atmospheric control chamber filled with helium con-

taining various levels of contaminants including oxygen, hydrogen, nitrogen,

and water vapor. Information on the effects of shielding-gas contamination on

porosity also has been obtained under contracts with Douglas and Battelle. The

objective of the IITRI study was to establish standardized methods of assuring

high-quality surface preparation for the welding of aluminum-alloy Saturn V

components. Information on the effects of surface contamination on porosity

also has been obtained in the Boeing study. Effects of base- and filler-metal

composition on porosity were studied at Battelle. Welds made with experi-

mental base and filler metals and welds in commercial plates were studied.

The problem of porosity formation in aluminum-base alloy welds and

castings has been the subject of numerous other investigations. 16-23 These and

additional studies have shown that hydrogen is the principal, if not the sole,

cause of porosity. However, little is known of the kinetics of porosity
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formation. An understanding of the kinetics is especially important in welding,

where the range of heating and cooling cycles can produce important effects.

Work at Douglas was directed toward studying mechanisms responsible for

porosity in aluminum welds in terms of metallurgical phenomena as well as
welding parameters.

Studies at Southern Research Institute and Air Reduction Company were

directed toward developing techniques for reducing porosity. At Southern

Research Institute, a study was made to determine the feasibility of reducing

porosity by a metallurgical method involving the use of scavenging elements

for eliminating hydrogen porosity in the weld metal. The scavenging elements

were to be capable of combining with the hydrogen gas and forming relatively
harmless compounds that would have insignificant effects on the mechanical

properties of the weld. At AIRCO, a study was made to reduce porosity by

using some device such as a magnetic arc shaper and a molten-puddle stirrer.

It is believed that information pertinent to the reduction of porosity can

be obtained in several other programs. The primary objective of a program at

Harvey Aluminum was to improve mechanical properties of a weldment by

reducing the thermal effect. They investigated the possibility of reducing

porosity by rapidly cooling the weldment during welding with a cryogenic liquid.

At AIRCO, a study is being made to assess the relative merits of the output

wave shape of the welding power supply and its effects on weld-joint quality and
performance.

The Martin Company conducted a study on the effect of porosity on the

performance of welded joints. The objective of this program was to enable an

inspector to describe a weld defect in terms that allow a precise prediction of a

joint's expected mechanical properties. This requires a defect classification

system that can predict the mechanical behaviors of interest. Static tensile

tests were made on transverse- and longitudinal-weld specimens containing

various levels of porosity. A limited study also was made of fatigue strength

of welds containing porosity. The study at Boeing provided data on the effect

of porosity on the static and fatigue strengths of welded )oints.

2. Thermal Effects of Welding

The second major problem in the current NASA research on

aluminum welding is the reduction of thermal effects of welding on the behavior

of weldments. A research program is being conducted at the Manufacturing

Engineering Laboratory of Marshall Space Flight Center, NASA, on the effects

of welding heat input on the mechanical properties of aluminum welds. 5
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Figure 2, which summarizes the test results, shows the relationship between

the following two variables.

1} Welding heat input per unit plate thickness

V. I x 60 joules/in.2,
sxW '

(1)

where

V = arc voltage , v

I = welding current, amp

s = arc travel speed, ipm

T = plate thickness, in.

2) Ultimate tensile strengths of transverse-weld specimens prepared

from weldments in 2219-T81 and -T87 alloys 0.224 to 2.25 in. thick

made by GTA, GMA, and electron-beam welding processes.

Figure 2 shows that the ultimate tensile strengths of welded joints decreased

as welding heat input increased, regardless of the welding process or the

material thickness. The higher weld strength obtained by using low heat input

is believed to be due to (1) a reduced thermal effect and (2) the geometrical

effect of a narrow weld. A reduction in weld heat input appears to result in

a heat-affected zone with higher-strength metallurgical structures. A joint

with a very narrow weld-metal area, but with a heat-affected zone that has

lower strengths than the base metal, still has nearly the same fracture strength

as the base metal. This is because the plastic deformation in the weld metal

and the heat-affected zone is restricted by the surrounding base metal. NASA

is conducting a study of physical metallurgy on aluminum weldments in an

attempt to determine the mechanisms of why welded joint strength increases

as heat input decreases.

A study is needed on how the information shown in Figure 2 can be used

for designing specific components. For example, when the major stress acting

on a joint is parallel to the joint, it is obvious that the ultimate tensile strength

across the weld joint has little effect on the strength of that particular

structural element. Consequently, there is no actual benefit from reducing

heat input for such joints. However, there may be cases where the increase

in strength by reducing heat input is critical. These areas need to be more

closely defined.
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In the current programs, studies were made of electron-beam (EB)
welding andcryogenic cooling as possible means of improving weld strength.
Since the heat generated during electron-beam welding is highly concentrated
in the weld area, a joint canbe made with a very narrow weld-metal area and
heat-affected zone. A limited investigation conductedat the Marshall Space
Flight Center has shownthat successful welds canbe made by the EB process
with much lower heat input than required by ordinary GTA and GMA processes,
and that the ultimate strengths of EB welds are much higher than those of GTA
and GMAwelds, as shownin Figure 2. However, with the present EB process
the weld must be made in a vacuum chamber; consequently, use of the electron-
beam process has been limited to the joining of small parts. Westinghouseis
conductinga NASAprogram to develop a practical, nonvacuumEB-welding unit
capable of penetrating 1-in. thick 2219aluminum alloy. This would enable
electron-beam welding to be used for the fabrication of large structural com-
ponents. However, the program was not completed as of 15 February 1967;
therefore, it is not covered in this report.

It was thought the same effect as the reduction of welding heat input
could be obtainedby absorbing the heat conductedinto the base plate during
welding. The absorption of heat could be achievedby forced cooling of the
base plate by impingement of cryogenic liquids, such as liquid CO2and liquid
nitrogen. At Harvey Aluminum, a study was of the effect of cryogenic cooling
during welding on properties of weldments.

3. Weld Quality Control

It is recognized that there are a number of quality-control problems

in welding. Consider, for example, the size and shape of the weld. The depth

of penetration is not always uniform; it fluctuates along the weld, especially

when the weld is made with certain types of welding equipment. When welds

are made with machines having different characteristics, the sizes and shapes

of welds may differ to some extent, even though the welds are made with the

same welding parameters, including welding current, arc voltage, and travel

speed.

Ideally, welds should have the same configuration (depth of penetration,

weld area, etc. ) and quality no matter where or when they are made (by

different fabricators at different times) ; provided the same type of equipment,

tooling, and joint design, and the same welding parameters are used. To attain

this objective, the following problems are being investigated or considered for

future investigation:
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1) What type of welding equipment (with what types of voltage, current,

and electrode-position control systems) is most suitable to obtain

consistent welds?

2) What weld-quality characteristics are likely to fluctuate--depth of

penetration, size and shape of weld, metallurgical and mechanical

properties of welds? How are they affected by different welding

parameSers?

3) How are weld-quality characteristics changed when welding

equipment is changed? How should we transfer welding parameters

from one welding setup to another to obtain welds with the same

quality?

The objective at Lockheed-Georgia was to study the transferability of

setup parameters for inert-gas welding. To accomplish this, attempts were

made to determine (1) the significant variables and (2) the degree of control

that can be achieved.
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Section IV. SUMMARY OF INTEGRATION STUDY AND RECOMMENDATIONS

This section summarizes major findings in the nine NASA programs

covered in this report. The following areas of investigation are discussed:

1) Sources of porosity

2) Mechanisms of porosity

3) Methods for reducing porosity

4) Effects of porosity level on weld-joint performance

5) Welding time-temperature control

6) Transferability of welding machines and parameters.

The major findings in each area are discussed briefly and the integrator's

recommendations are made for application to Saturn V fabrication and for

future research. Following these discussions, general recommendations for

the selection of weld parameters and for weld inspection and repair are

presented.

1. Sources o{ Porosity

Sources of porosity in aluminum weldments can be classified as:

(1) contamination of shielding gas, (2) contamination of the joint or filler-

metal surfaces, and (3) composition of base plate and filler metal.

a. Shielding-Gas Contamination

It has been found that shielding-gas contamination can be one of

the major sources of porosity in aluminum weldments. However, it also has

been found that commercial shielding gas is normally acceptably pure as

received. In the NASA-sponsored programs conducted at Boeing, 3 Battelle, 4,5

Douglas, G and Martin, 9 investigators reported that it was always necessary to

intentionally contaminate the shielding gas to produce an appreciable amount of

porosity. Welds made in the laboratory did not contain appreciable amounts of

porosity when they were made with proper procedures, i.e., when plates were

cleaned properly and commercially pure shielding gas was used.
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The effect of individual gas contaminantswere studied by making welds
in an atmospheric-control chamber containing various levels of gas contamina-
tion. 3 The metal studied was 1/4-in. thick, 2219-T87 aluminum alloy, welded

in the horizontal position by the GTA process using 1/16-in. diameter,

2319 aluminum-alloy filler wire. The following results were obtained:

1} Increasing hydrogen concentration increased porosity.

2) Increasing water vapor increased porosity.

3) Increasing oxygen did not increase porosity; in some cases, a

slight decrease in porosity was observed.

4) Increasing nitrogen had little effect on porosity.

The Boeing investigators presented Figure 3 as a guide for controlling
shielding-gas contamination. 3 The contamination levels shown indicate where

occurrence of a weld-quality change is initially observed. The figure indicates

that 250 ppm of either hydrogen or water vapor was necessary before significant

quality changes were observed. As shown in Figure 3, shielding-gas contamina-

tion caused various effects including surface discoloration, undercut, and

reduction in arc stability. Such phenomena also were observed in other

programs. 4,5,6,9

Figure 4 gives the calculated relationship, as determined by the Boeing

investigators, between percent of water-saturated air in the base gas and

resulting hydrogen concentration. 3 The figure indicates that at 70°F, for

example, an addition of 0.6 percent saturated air to pure helium would result

in 250 ppm hydrogen in the shielding gas.

On the basis of experience gained in the current programs, the

integrator believes that there is no reason to change the present NASA specifi-

cation (MSFC-364A) for shielding gas. Normal commercial gases which meet

this specification are believed to have sufficient purity.

However, gas contamination can occur within the bottle, or sometimes

between the bottle and the torch nozzle. Contamination could occur in a

partially empty bottle, for instance. Or, it could occur due to defective

connections in the tubing system. For these reasons, it might be advisable

to devise a means of checking the purity of shielding gas at the torch nozzle

rather than in the bottle. In such checking, Figure 3 could be used as a guide

in determining the acceptance purity level. However, it should be only a guide,

remembering that these data are based on welds made in an atmospheric-

control chamber. Results for production welds, made under open conditions,
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could be expected to differ from these. Further experimental studies of open-

air conditions would be needed to determine exact shielding-gas purity levels

for production welds.

b. Surface Contamination

In all of the current NASA programs, except the IITRI work,

metal surfaces were cleaned and surface contaminations were kept at the

minimum. The IITRI work, in which effects of base-metal surface contamina-

tion on weld porosity were studied, was not completed as of 15 February 1967.

Consequently, the following comments are temporary and subject to changes

in the future.

Surface Contamination as a Source of Porosity. It is believed that con-

tamination of the base metal and the filler metal is an important factor causing

porosity.

Figure 5 shows results of calculation by the Boeing investigators on the

amount of hydrogen gas available by decomposition of hydrocarbon on the weld

groove. 3 It is assumed that hydrocarbon will decompose completely to gases

by the welding arc and they will become gaseous contaminants. According to
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their calculation, it requires less than 1 mg of hydrocarbon per inch of weld

to continuously generate 250 ppm hydrogen in the shielding gas. It is estimated

that a single fingerprint would result in a 750-ppm hydrogen increase in the

area contamined. By comparing Figures 3 and 5, the Boeing investigators

estimated that a single fingerprint would cause a significant increase in porosity.
The estimation was based on the assumption that hydrocarbons on the surface

of the weld joint would have the same effect as an equivalent amount of hydrogen

being introduced as a contaminant in the shielding gas.

A simple weld test was conducted at IITRI on the weld-defect potential

of several surface preparations. 14 The experiments were made on 2014-T651

alloy plates. The results are shown in Figure 6 as a weld-defect potential.

In this study, all the machined-only surfaces had a zero weld-defect potential.

All other types of surface preparation produced some degree of porosity.
Conventional surface treatments such as solvent degreasing, chemical cleaning,

and water rinsing promote the formation of porosity. The IITRI investigators
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believe that porosity is formed due to adsorbed solvent, hydrogen, and water.

Anodizing and silicone coating produce extremely detrimental conditions for

welding. In Figure 6, the treatments tested are divided in two groups: Group A

(as-received and treated) and Group B (machined and treated).

An important finding obtained at IITRI is that an extended exposure to

moist air prior to welding did not result in porosity in the as-machined

specimens. However, other types of contamination can occur on the machined

surface, and therefore, machining immediately before welding will be a

desirable method of surface preparation.

Analysis of Surface Cleanliness. During the work which is still in

progress, several techniques for measuring surface cleanliness have been

evaluated. 14 These include radioactive evaporation (Meseran), spectral

reflectance, mass spectrometry, gas chromatography, and spark emission

spectroscopy. These techniques and others are still being evaluated in Phase II

of the program. Each of them is quite sophisticated and will require closely

controlled conditions and highly trained personnel to operate. To date, none

of these techniques has proven completely satisfactory and none of them appears
very practical for a production application.

Recommendations. Further studies need to be made of the defect

potential of various surface preparations and of various contaminations, such

as fingerprints. Studies need to be continued on techniques of evaluating

surface cleanliness. Perhaps of most importance is a means of machining

surfaces immediately before welding to insure a clean surface.

Co

porosity. 4,5

level, are:

1)

2)

3)

4)

Composition of Base Plate and Filler Metal

An investigation was made of the effects of four factors on

The four factors, listed in the order of their influence on porosity

Shielding-gas moisture content

Alloying elements

Metallic impurities

Internal hydrogen content.
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The program was conductedin two phases, the first phaseusing experimental
base metals and filler metals, andthe secondphaseusing commercial
materials. The results indicate that base-plate andfiller-metal compositions
are not likely to be significant sources of porosity as long as (1) shielding-gas
and surface contamination are controlled at low levels and (2) base plates and
filler metals are carefully prepared to meet the present specification with no
gross hydrogen contamination. It has beenhypothesizedthat there is a
synergistic effect of alloy andmetal impurity content, and external contamina-
tion (shielding gas and surface), which causessignificant porosity. This has
not yet been substantiated.

Because of these findings, the integrator recommends no changesin
the present NASA specification for base-plate and filler-metal compositions.

2. Mechanisms of Porosity

A study was made of the effects of welding parameters on the

nucleation and growth of porosity. 6 However, there appear to be reasons for

questioning the reliability of some of the equations used in the statistical

analysis. More studies are needed before conclusive statements can be made

on the mechanisms of porosity formation.

3. Methods for Reducing Porosity

It has been shown that hydrogen contamination can be reduced or

eliminated through proper surface preparation, cleanliness precautions during

the handling of the materials, and welding procedures. However, carefully

these procedures are observed, though, some hydrogen may still be present in
the molten puddle. Thus, it is desirable to devise a means within the welding

process to eliminate or neutralize hydrogen that may be present, and thus

reduce porosity. Three separate means of doing this were studied in different

programs.

a. Hydrogen Getters

It is known that certain elements will act as scavengers of

hydrogen, either eliminating it or combining with it in a harmless form. The

problem is how to introduce these elements to the welding process. At

Southern Research Institute, experiments were made of studying the use of

scavenging elements including Ti, Zr, Ce and Ca. In the work conducted so

far, no significant reduction in porosity was obtained through use of powders as
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scavengerelements, and in somecases the severity of porosity was increased.
The results, however, do not necessarily mean that the theory of scavenger
elements is wrong. Further work shouldbe doneto develop other methods of
using these elements.

b. Magnetic Arc Shaper and Molten-Puddle Stirrer

Another possible method of reducing porosity is the use of

mechanical devices that either agitate the puddle or oscillate or shape the

plasma. Both puddle stirring and plasma oscillation have proved successful

in reducing the level of porosity, although the percent reduction was relatively

small. However, attaining this reduction requires the addition of complicated

equipment to the welding torch.

c. Cryogenic Cooling

The results obtained at Harvey Aluminum have shown that

porosity could be reduced by cryogenic cooling during welding. However, the

percentage of porosity reduction was relatively small. The use of this method

introduces the risk of contaminating the weld and further complicates the

welding process. More study is needed before conclusive statements can be

given on this subject.

4. Effects of Porosity Level on Weld-Joint Performance

The following tests were made on specimens prepared from welds

containing various levels of porosity: 3,9

1) Static tensile tests of transverse-weld specimens

2) Static tensile tests of longitudinal-weld specimens

3) Fatigue tests of transverse-weld specimens.

a. Static Tensile Strength of Transverse-Weld Specimens

It was observed in the programs at Martin 9 and Boeing _ that the

ultimate tensile strength of a transverse-weld specimen decreases with

increasing porosity. Theoretically, this loss in strength should be approxi-

mately proportional to the loss of sectional area due to porosity. However,
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this was not the case in experimental results at Martin. 9 In these experiments,

a 5 percent loss of sectional area caused as much as 30 percent reduction in

strength. The Martin investigators felt that a large number of very fine pores,

which were not counted (only pores 1/64 in. in diameter and larger were

counted in figuring loss of sectional area), were the prime cause of the marked

decrease in strength. If the loss of sectional area due to these fine pores were

added, the total loss in sectional area would be closer to the loss in strength.
Additional analysis by the investigators supports this conclusion. However, it

is the integrator's opinion that the inclusion of the fine pores may not be the only

factor that caused the great loss of strength. These welds were made using

highly contaminated gas, and some material degradation may have taken place.

Before conclusions are drawn from these results, experiments should

be made, if possible, on production welds, or Boeing specimens should be

analyzed in the same manner as the Martin specimens. It might also be well

to run metallurgical tests on the Martin specimens to determine what degrada-
tion may have occurred.

b. Static Tensile Strengths of Longitudinal-Weld Specimens

Results of these studies indicated that mechanical properties of

longitudinal-weld specimens are much less affected by porosity than are those

of a transverse-weld specimen because the weld metal represents only a

fraction of the specimen area.

C.

with porosity.

quantitatively.

Fatigue Tests of Transverse-Weld Specimens

It has been found in the two programs that fatigue life decreases

However, more research is needed to measure these effects

5. Welding Time-Temperature Control

It is known that the transverse strength of a weldment increases as

welding heat input decreases, as shown in Figure 2. This has been observed

in welds in different thicknesses made by the GTA, GMA, and EB welding

processes. Consequently, welding of high-strength heat-treated aluminum alloy

such as 2014 and 2219 should be made using low heat input. A study was made

at Harvey Aluminum 1° of cryogenic cooling as a means of shortening thermal

cycles and thus improving tensile properties of aluminum weldments. General

increases of 4 to 10 percent in yield strength were obtained by cryogenic
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cooling. The ultimate tensile strength also increased to some extent by

cryogenic cooling. The ultimate tensile strengths of the unchilled welds, as

reported by Harvey, were in the vicinity of 40 ksi. This appears to be only

the start of the upswing of the heat input-strength curve (Figure 2). Much

higher strengths are yet available by further reducing heat input. The effective-

ness of cryogenic cooling may become greater as the weld heat input decreases.

The cryogenic cooling technique may prove to be a useful means

of reducing weld distortion. However, to attain these improvements, a risk

is taken of contaminating the weld, either by the cooling jet or by condensation
on the surface. Further studies are needed to obtain conclusive results on this

subject.

6. Transferability of Welding Machine and Parameters

It was found that duplicate trace recordings of six basic GTA welding

variables indicate duplicate welds, if weld-joint preparation, tooling, and

welding position have been duplicated. The six variables, in order of importance,

are travel speed, electrode tip position, current, voltage, gas purity, and

electrode tip diameter. On the basis of experimental results conducted on

GMA welds, the regression analyses used were not considered reliable and no
final conclusions have been made.

Experimental data were statistically analyzed to determine analytical

relationships among welding parameters and weld properties including

penetration, nugget shape, and mechanical properties of the joint. However,

these results are not completely satisfactory. Further study needs to be

made of the physical meanings of the equations used.

7. Selection of Welding Parameters

Selecting proper welding parameters has been an important problem

for welding engineers. When fusion welding high-strength heat-treated

aluminum alloys, the following two major problems need to be considered in

selecting parameters: (1) mechanical properties of weldments and (2) porosity.

Other problems such as susceptibility for weld cracking also need to be
considered.

In order to improve the mechanical properties of weldments, it is

recommended that welding parameters that produce small heat input be used.

A lower welding current and a higher arc travel speed produce smaller heat
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input. Figure 2 canbe used as a guide for evaluating the effect of heat input
on the strength of a welded joint.

The selection of proper welding parameters to control porosity requires
more analyses. The use of high heat input with slow cooling tends to cause a
small number of large pores; loss of cross-sectional area may be low, but
the loss of strength dueto welding thermal effect is great. Use of a small
heat input with fast cooling tends to cause a large number of fine pores; loss of
sectional area due to porosity may be high. More study is neededto develop
a technique for scientifically selecting welding parameters.

8. Recommendations for Weld Inspection and Repair

a. Inspection of Weld Defects

Recommendations for the revision of the current inspection

standards is outside the scope of this report. However, it seems essential to

review some points that are suggested by the current programs and are

pertinent to these standards. Only general conclusions are given here.

Small Pores. A large number of fine pores, say less than 0.03 in.

in diameter, can cause significant reduction of cross-sectional area, resulting

in considerable loss of strength. However, present inspection standards tend

to place inadequate emphasis on the importance of the fine pores that are often

found in aluminum welds. Further study should be made to determine more

exactly the importance of these pores.

Stress State of a Joint. Welds that are loaded parallel to the welding
direction are less sensitive in their mechanical behavior to defects than welds

that are loaded transverse to the weld direction. Consequently, different

acceptance levels of porosity might be used, depending upon the location of a

weld and the direction of the weld relative to the direction of load expected

during service.

Improved Nondestructive Testing. Improved nondestructive testing

techniques should be developed for determining the total cross-sectional area

of flaws in the expected fracture plane. Multiple X-ray shots appear to offer
the best promise.
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b. Repair Welds

It is known that repair welds, unless they are made very care-

fully, may have properties inferior to normal welds. The repair welds can

create high residual stresses and additional distortion. Failures in various

structures have been traced directly to repair welds. In many cases, porosity

does not cause high stress concentration, and loss of strength due to porosity

is rather minor. It is recommended that weld repairs be kept to a minimum.

In some cases where defects are not critical, welds might better be left unre-

paired.
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Section V. ANALYSIS AND EVALUATION OF THE NASA-SPONSORED

PROGRAMS COVERED IN THIS REPORT

1. Materials and Welding Processes Studied

The nine NASA-sponsored research programs that are covered in

the present report deal primarily with welds made in the following materials

and by the following processes:

Plate thickness:

Welding process:

1) Base Plate: 2014-T6 and 2219-T87 supplied by NASA-MSFC

2) 1/4, 1/2, and 3/4 in.

3) GTA processes, D-C, straight polarity

4) Filler wire (when used) : 4043 for welding 2014-T6, and 2319 for

2219-T87, 1/16 in. in diameter

5) Shielding gas: helium

2. Effects of Shielding-Gas Contamination on Porosity

Three programs, at Boeing, Battelle, and Douglas, consisted of

research on the effects of shielding-gas contamination on porosity. In all of

these programs, it was found that the shielding-gas contamination had a much

more significant effect on porosity than did the other factors investigated.

Section V-2 describes the results obtained at Boeing under Contract

NAS8-20168. The other work at Battelle and Douglas is described in

Sections V-3 and V-4, respectively, immediately following.

a. Research Procedures Under Contract NAS8-20168

The study was performed in two phases as follows:

Phase I. Determination of the ranges for which a relationship exists

between contaminants (02, N2, H2, and H20 ) in arc-

shielding helium and weldment defects.
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PhaseII. A quantitative determination of the shielding-gas contamination
effects onporosity, mechanical properties, and metallnrgical
characteristics of 2219-T87 aluminum weldments.

Welding Procedures. 2219-T87 aluminum alloy plates 1/4-in. thick,

12-in. long, and 10-in. (Phase I) or ll-in. (Phase II) wide were butt-welded

along the 12-in. long edges. Welds were made in an atmosphere-control

chamber by the GTA process, D-C, straight polarity. The following welding

schedule was used for all panels:

Joint design: square butt, no gap

Welding current: 240 amp

Arc voltage: 13 v

Wire feed speed: 36 ipm

Travel speed: 12 ipm

Work temperature: 70-78 °F

Helium-gas flow rate: 15 ft3/hr in Phase I

80 fta/hr in Phase II

The higher shielding-gas flow rate was used in Phase II to better simulate

production conditions.

Weldment Evaluation. Following radiographic analysis, each weldment

panel was machined to obtain two gravimetric, two tensile, and three fatigue

samples and one metallographic sample.

Statistical Analyses. Statistical analyses were used extensively in

the design of experimental programs and the analysis of experimental data.

The 24 factorial analysis was used to design experimental programs for studying

effects of the four contaminating gases (oxygen, hydrogen, nitrogen, and water

vapor). Experimental results were analyzed on the basis of the factorial

analysis. The data were then analyzed to obtain regression equations relating

the levels of contamination to each measure of weld quality. The following

model was used for the stepwise regression analysis:
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Y,

1

where

Y. = weld quality
1

X 1 = oxygen

X 2 = hydrogen

X 3 = nitrogen

X 4 = water vapor

b o + BlX + ........ + b4X 4

+ b 2XlX2+ .......... + b34X3X 4

+ b123X1X2X3 + ....... + b234X2X3X4

+ b1234:XlX2X3X4 + b11X _ + ..... + b44X_,

bo, bl ..... b 4, bl2 ..... b44 = coefficients.

Further definition of the terms used in the regression equations are
shown in Tables II and III.

(2)

In the regression analysis in Phase II, the cubic centimeters of con-

taminant available per gram of weld bead formed, Ci, also were used. The

value X. was replaced by C. for each contaminant in the regression model shown
I 1

in Equation (2) :

C 1 =

C 2 =

C3 =

C 4 =

( cc of oxygen) / ( g of weld metal)

( cc of hydrogen)/(g of weld metal)

( cc of nitrogen) / (g of weld metal)

( cc of water vapor) / (g of weld metal).

35



o

f..fl

0

,,_-4

o

0.)

[..fl

0

[..fl

F..fl

,..4

<
o

o_,_

bJ

.o
"0

0

o

o _

= _
_ m

• b,O _l o

o "_ • o
o

,_ 0 0 .,._
•_ ,......_ ._ _,_0_ • ,-_ .

o o o

1
"_ _ ':::_ _ _

II II II II II II

0

0

0

0

0

0

r_

H

0o

o
"0

o

_._
,_,-I

m _

II II

o

o o

o

o

o_

o_-t

• _,,,I

o

0
2;

0

o

0

m

0

•,-_ _
"0

m_

m _

36



TABLE III. LOGARITHMIC FUNCTIONSUSEDIN REGRESSIONEQUATIONS

For expressing Xi, indicating the contamination level,
functions were used in PhaseI, as follows:

logarithmic

1) Oxygen- X1

2) Nitrogen - X 2 --

3) Hydrogen - X 3 =

4) Water vapor - X 4 =

= (log O 2 - 3.1505)/1. 1505

(log N 2 - 2.3495)/1. 3495

(log H 2 - 3. 1505)/1. 1505

(log H20 - 3.0)/1.0,

where O2, N2, H2, H20 are levels in ppm of oxygen, nitrogen, hydrogen, and

water vapor, respectively.

In Phase II, linear functions were used, as follows:

1) Oxygen - X 1 =

2) Nitrogen - X 2 =

3) Hydrogen - X3 =

4) Water vapor - X 4 =

(02 - 500)/250

(N 2 - 500)/250

(H 2 - 500)/250

(H20 - 500)/250

b. Results Obtained Under Contract NAS8-20168

Porosity Data and Statistical Analyses. Table IV shows an

example of test results obtained in Phase II. Shown in the table are (1) con-

tamination levels of the four gases, (2) results of the radiographic analysis,
and (3) porosity, in volumetric fraction percent, determined from the weld-

density.

Table V shows, as an example of the statistical analyses, results of

the regression analysis on the data obtained in Phase II. Values of regression

coefficient bo, bl, ...., b4, b12 , ...., b44 for various weld quality measures,

Y1, Y2 ..... , Y17, are shown. Y1 through Yll are weld quality measures related

to porosity, while Y12 through Yl? are related to mechanical properties. Also

shown are coefficient of determination, R2; coefficient of correlation, R;

standard error of the test S .; and degree of freedom, DF. Good correlations
yl
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were obtained between gas-contamination levels and the porosity measures. In

addition to main factors, interactions of different gases also were found to be

significant in some cases.

Effects of Shielding-Gas Contamination on Porosity. In general, the

observed effects of the gaseous contaminants studied in Phases I and II were

the same. However, the levels of contamination used in Phases I and II could

not be compared because of the difference in torch flow rates for the shielding

gas (15 cfh in Phase I and 80 cfh.in Phase II). The level of contamination

required to cause visual surface defects was considerably lower in Phase II.

To study the contamination effects on a comparable basis, the level of con-

tamination was changed from parts per million (ppm) to cubic centimeters (cc)

per inch of weld.

Figure 7 plots individual gaseous contaminant effects on total defects per

inch of weld in Phase II welds when all other gaseous contaminants are kept at

5 ppm. 3 Curves in the figure are determined from results of the statistical

analysis shown in Table IV. Addition of either hydrogen or water vapor

increased porosity. Hydrogen caused the greatest increase, becoming significant

above 250 ppm. Additions of oxygen and nitrogen did not change the porosity

level. Figures similar to Figure 7 were obtained to show effects of adding one

gas while other gases were kept at constant levels, such as 250 and 500 ppm.

The Boeing investigators summarized the results of increasing individual

gas contaminants as follows:

1) Oxygen. Increasing the oxygen level did not increase porosity.

In some cases, a slight decrease in porosity was observed; however,

because the welds made with no contamination present contained

little or no porosity, there was not much chance for improvement.

Increasing the oxygen caused an increase in the density of the weld
bead in Phase II. This was not observed in Phase I where the

maximum level of oxygen was less than half that in Phase II.

2) Hydrogen. Increasing the hydrogen concentration increased the

level of porosity and decreased the density of the weld bead.

3) Nitrogen. Increasing nitrogen had little effect on porosity or

density.

4) Water vapor. Increasing water vapor increased porosity and

decreased density.
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TABLE V. REGRESSION

Regression

Coefficients

Constant b 0

Radiographic Analysis

Y = defects per inch of weld bead Y -- defects per gram of weld bead

To

0. 024 in.

27. 581

To

0. 049 in.

0. 629

To

0. 150 in.

0.0948

Total

28.474

To

0. 024 in.

7.137

To

0. 049 in.

0.163

To

0. 150 in.

0.0237

Total

7. 002

Weld

Bead

Density

2. 818654

X 1 = O 2 b 1 - 3.897 0.381 - 3.977 -1.016 0.103 0.0080 -0.991 0.003317

X 2 = H 2 b 2 17.255 0.379 18.032 4.590 0.101 4.824 -0.008300

X 3 = N 2 b 3 14.166 0.316 14.738 3.757 0.085 3.958

16.44415.533 0.0488 4.148 0.130 0.0108 4.776 -0.008671

-0.945 0.119 -0.0070 -0.932

0. 495X 4 = H20 b 4

X1X 2 bl2 - 3.606 0.439 -0.0252 - 3.754

XlX 3 b13 0.445 0.123 0.0073

X1X 4 b14 0.413 0.112 0.0036 0.001364

X2X3 b23 8.876 0.443 9.613 2.400 0.120 2.678

X2X 4 b24 11.400 0.382 11.991 3.034 0.103 3.060 -0.002597

X3X 4 b34 11.880 0.448 12.510 3.158 0.121 3.240

X1X2X3 b123 0.448 0.121

X1X2X 4 b124 0.443 0.120

X1X3X4 b134 0.305 -0.0137 0.084 0.000991

X2X3X 4 b234 7.433 0.386 8.009 2.005 0.104 2.181 -0.001419

0.0132

XIX2X3X4 b1234

X_ bil

2.749X_ b22

- 2. 265

X32 b33

X_ b44

2. 783 0.740

-0. 617

0. 280

0. 116

0.075

0. 032

-0. 016

0. 030

-0.059

0.110

0. 0034

0.0060- 2.594

0. 710

0. 0214

Coefficient of

determination, R 2 0.927 0.879 0.650 0.930 0.928 0._81 0.650 0.929 0.878

Coefficient of

correlation, R 0.963 0.938 0.806 0.964 0.963 0.939 0.806 0.964 0.936

12.090 0.418 0.129 12.064 3.210 0.111 0.035 3.206

Standard error

of the test, S
yi

54 47 58 55

Degrees of

freedom, DF 54 47 60 54

Code for contamination level, X.
1

Xl O2(ppm) - 500 Nz(ppm) - 500
= 250 X3 = 250

X2 = H2(ppm) - 500 H20(ppm) - 500
250 X4 = 250

0.0063
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kNALYSIS (ppm)

nsity

Base Metal

Minus

Weld Bead

Density

0.019943

-0.002452

0.008408

0.008944

Metallo-

graphic

Porosity

Vf (%)

1.230

-0.350

U It i m at e

(psi)

43,511.9

202.5

- 516.4

- 629.7

Longitudinal

Yield

(psi)

21,930.2

Elonga-

tion

2.0 in. (%

14.29

- 0.75

- 0.98

Tensile Strength

Transverse

Ultimate

(psi)

35,661.3

374.1

1,653.9

458.5

Yield

(psi)

24,053.9

213.2

- 203.9

E longa-

tion

2.6 in. (%)

2.911

0.150

-0.444

0. 149

-0.164

Fatigue

Transverse

Cycles

to

Failure

155,001.3

- 36,003.2

50,195.2

0. 145 442.6 903.9 - 16,301.9

-0.040 0.38 0.825 22,350.3

-0.243 105.1 - 0.77 175.8 0.671 - 29,597.9

-0.196 - 294.7

0.21

0.002826

0.000895 0.382

0.206

0.000726 0.272

0.000830 -0.679

0.085

0.801

- 251.1 - 0.46 652.1 126.2 -0.191

269.9

195.3

70.3 - 24,832.8

- 126.0 - 0.19

- 71.7 - 136.8 - 153.5 - 17,585.0

48.0

- 59.5

-0.333

-0.383

0. 695

122.7

0.161

O. 40

0.670

- 207.9

0.502

0.888

0.168

O. 834

1. 064

52

0. 885 0.684

221.0

89.9

0.941

0.0060

305.1

145.9

11,819.5

16,447.2

57,576.4277.0

491.0

C.7700. 249 O. 515

0.709 0.499 0.818 0.877 0.402 0.827 0.717

1.037 0.972 1.607 1.422 0.890 0.495 184,545.0

58 57 56 59 56 5554
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Metallographic Evaluation. The metallographic specimens were cross
sectioned and examined in the polished and etched conditions. Increases in

hydrogen and water vapor caused an increase in porosity, while oxygen and

nitrogen had little effect on porosity.

In general, the porosity was localized in the weld metal along each side

of the weld bead. The shielding-gas contamination had little effect on the micro-

structures of the welds.

Visual Effects. One of the most significant effects of contamination

was changes in surface condition forming undercut, discoloration, and roughness.

Surface variations caused by the individual gases were summarized as follows:

1) 500-ppm total contamination was necessary to cause an appearance

change which could be considered cause for weldment rejection.

2) 100-ppm H20 caused yellowish surface appearance fading to grayish,

with roughening of the surface at 500 ppm.

3) Oxygen gave a silvery to grayish appearance and increased the

undercut with increasing concentration.

4) Nitrogen gave a blackish appearance along the edge of the weld bead.

This discoloration increased in intensity with increasing contamina-

tion from 100 to 500 ppm; the surface in the center of the bead

began to yellow at 500 ppm.

5) Hydrogen gave a grayish rough appearance and decreased undercut

was observed as concentration was increased; at hydrogen levels

greater than 250 ppm no undercut was observed.

Increased surface effects were noted with the mixed gases, because for most

of the conditions, the total contamination was in excess of 500 ppm. Between

750 and 1000 ppm total contamination, the arc began to wander leaving a wavy

bead. At 1500 ppm total contamination, the arc became erratic and unstable.

c. Analysis and Evaluation of the Boeing Study on Shielding-Gas
E ffe ct s

The conclusions drawn by the Boeing investigators are summarized

in the Appendix. The integrator's discussion and evaluation of significant

findings in their study follows.
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Onthe basis of experimental findings, the Boeing investigators presented
Figure 3, which showscontamination concentration levels at which significant
changesin weld quality occur. This figure canbe used as a guide for engineers
who are engagedin the fabrication 6f space vehicles. It must be mentioned,
however, that the figure was prepared on the basis of results obtained on
welds made in ar_atmosphere control chamber, not in the openair in which most
large structural componentsare fabricated.

Figure 4 shows calculated relationships betweenthe percent of air at
saturation in the base gas andthe resulting hydrogen concentration. The
figure indicates that at 70°F, the addition of 0.6 percent air, saturated with
water vapor, to pure helium would result in 250ppm of hydrogen in the shielding
gas.

The Boeing investigators presented Figure 5 to estimate the amountof
surface contamination necessary to produce a certain amount of shielding
contamination. This figure plots the relationship of grams of surface hydro-
carbon to level of hydrogen generated. Also shownis the estimated level of
hydrogen generated by welding through a single fingerprint. These estimates
are basedon the assumption that hydrocarbons on the surface of the weld joint
would have the same effect as an equivalent amountof hydrogen being introduced
as a contaminant in the shielding gas. The figure showsthat less than 1 mg/in.
would be necessary to generate 250-ppmhydrogen in the shielding gas. A
single fingerprint would cause 750-ppmhydrogen increase in the shielding gas.
These calculations indicate that very small amountsof organic materials can
be a significant causeof porosity.

3. Effects of Base- and Filler-Metal Composition on Porosity

The composition of the base metal and filler metal used in welded

high-strength aluminum-alloy fabrication had been suspected as a possible

c_use of weld defects, especially porosity, and the objective of the work con-

ducted at Battelle was to determine what influence, if any, variations in the

composition of 2014-T651 and 2219-T87 aluminum alloys had on porosity in GTA

welds. This work was sponsored under Contracts NAS8-1145 and NAS8-20303.

a. Research Procedures

Materials Investigated. The effect of aluminum-alloy composition

upon resultant weld quality was studied using two different materials. The

materials first used required fabrication of eight different compositions each
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of experimental X2014-T6;:-"and X2219-T87base plates in 1/4- and 3/4-in.
thicknesses, and of X4043and X2319filler wire. A total of 48 separate experi-
mental compositions were prepared. The secondset of materials used in
later work were heats of available commercially-prepared 2014-T651and
2219-T87alloys with 1/4- and 3/4-in. thickness.

The procedure followed with the experimental andthe commercial alloys
was essentially the same. GTA welds were made on plates in the horizontal
position with close control of welding conditions. The welding was conductedin
a vacuum-purged chamber filled with helium to which water vapor could be added
as awelding-arc contaminant.

Factors Investigated. The studies of the experimental and of the

commercial materials were made in slightly different ways. The composition

of 2014 and 2219 aluminum alloys was specified as follows:

Composition (percent by weight)

Metallic Impurities
Alloy Alloying Content (range) (maximum) ;',-_;'.-"

2014

2219

3.9-5.0Cu, 0.4-1.2Mn, 0.5-1.2Si,

0.2-0.8Mg

5.8-6.8Cu, 0.2-0.4Mn, 0.02-0.10Ti,

0.05-0.15V, 0.10-0.25Zr

1.0Fe, 0.25Zn,

0.15Ti, 0.10Cr

0.30Fe, 0.10Zn,

0.20Si, 0.02Mg

The initial study of experimental materials was planned to investigate

four factors at two levels. The factors were alloying content, metallic

impurities, internal hydrogen content, and arc shielding-gas water content.

The alloying content was composed of those elements for which a range was

specified, whereas metallic impurities were those elements specified only

as a maximum allowable. Internal hydrogen content was the hydrogen content

of the interior of the plate as measured by the tin-bath, vacuum-fusion process.

The arc shielding-gas water content was the measured dewpoint of the helium

in the welding chamber. The two levels selected were high and low. For

example, at the low level, the alloying elements were near the specified

minimum while the impurity elements were almost nonexistent. The initial

plan called for a study of only one-half the 16 possible combinations of four

variables at two levels for each thickness of X2014-T6 and X2219-T87. Because

the level of each factor could not be controlled independently, the welding of

*"X" denotes alloys cast and fabricated by Battelle.

_'_-'Other elements, 0.05 percent maximum each, other elements total,

0.15 percent maximum.
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X4043on commercial 2014-T651and X2319on commercial 2219-T87was
conductedwith a high level of arc shielding-gas water content. This deletion
of onevariable increased the number of observations that could be made.

The final study of commercial materials utilized a computer stepwise
regression analysis of each specified element and of the internal hydrogen con-
tent of 2014-T651 and 2219-T87 alloys 1/4- and3/4-in. thick. The quantity of
different heats of material found for the investigation was limited as follows:

Number of Heats

Alloy 1/4-in. Thick 3/4-in. Thick

2014-T651

2219-T87

16

7

The range of composition of the materials obtained was limited to the
central portion of the specified range as Figure 8 shows for the 2014-T651
heats.5 The ranges of composition of the commercial alloys that were studied

ALLOYING ELEMENTS
MAXIMUM

COPPER 3.9 L
MINIMUM

15.0

1 4 4
SILICON 0.5 1.2

MANGANESE 0.4 .2

MAGNESIUM ).8

FIGURE 8. RANGES OF COMPOSITION FOR 2014-T651 BASE PLATE

PLATE WELDED (Numerical indicates number of heats

that fall within each interval. )
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were typical of the composition range normally found in these alloys. The
composition range of the experimental alloys was much broader than the range
of the commercial alloys.

Welding. All of the welding was GTA straight polarity using a voltage-

regulated automatic head in a helium-filled vacuum chamber. Welding was
conducted in the horizontal position making 36-in. long bead-on-plate welds

both with and without filler-wire addition. All plates were chemically cleaned

immediately prior to welding. Any statistical analyses were for welds made

with the same voltage, current, travel, and wire-feed speed. There were

minor changes made in the settings to obtain complete penetration with a

minimum of undercut. The welding conditions used for the analysis of com-

mercial material are typical and are listed in Table VI. The moisture dewpoint

of the helium arc shielding gas was about -60°F for low dewpoints and 0 to 5°F

for high dewpoints.

TABLE VI. WELDING CONDITIONS EMPLOYED

Alloy

2014-T651

2014-T651

2219-T87

2219-T87

2014-T651

2219-T87

Plate

Thickne s s

(in.)

1/4
3/4

1/4

3/4

1/4

1/4

Voltage

(v)

11.5

12.4

13.2

13.2

11.5

13.2

Current

(amp)

180

260

150

260

210

210

Arc

Travel

(ipm)

11.6

10.3

11.6

10.3

11.6

11.6

Wi r e

Feed

(ipm)

45

45

All welds were bead-on-plate in the horizontal position using the D-C

straight-polarity, GTA welding process. Arc shielding gas was helium.

Wire was fed in the forehand position.

Weld Defect Analyses. A total of over 300 3-ft long welds were pre-

pared for detailed study. All of the welds were first X-ray radiographed

following MIL-STD-453 and graded to ABMA-PD-R-27A. The only defects

observed were pores. Although some of the porosity found was graded in the

worst classification, most of the welds contained a minimal amount of radio-

graphically visible porosity. The programs relied on microscopic inspection

of transverse weld sections to supply numbers for analysis. Point counting

techniques were used to determine the volume percent porosity of the weld

metal. About 1000 transverse weld cross sections were cut at random points,

polished, etched, and photographed for point counting. The volume percent
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porosity varied from 0 to 25 percent but the majority of the welds contained

1 to 8 volume percent porosity.

b. Results Obtained

Experimental Materials. The planned fractional factorial

analysis was not used to analyze the results because the internal hydrogen con-

tent of the X2014 and X2219 could not be controlled independently of the com-

position. In addition, almost all the welds made with a helium dewpoint of

-60°F were free of porosity. An analysis was conducted of the welds made at a

helium dewpoint of about 5°F. For the four factors studied, the following

general ranking was established. The most significant factor is listed first.

1) Arc shielding-gas water content. This factor, when changed from

a dewpoint of -60°F to + 5°F, was the most significant factor

related to the occurrence of weld porosity.

2) Alloying content. In general, for the experimental materials

studied, increasing the weight percent of the alloying elements

from the minimum to the maximum specified was associated with

minor increases in the occurrence of weld porosity.

3) Internal impurities. In general, the relationship of internal

impurities to weld porosity was similar but less strong than that

between porosity and alloying content.

4) Internal hydrogen content. Increasing amounts of base plate

hydrogen content from 0.1 to 1.8 ppm (by weight) and of the wire

total hydrogen content from 1.4 to 4.0 ppm was found to have a

minor influence on increasing weld porosity. However, one heat

of X2014 which had been grossly contaminated with hydrogen during

pouring had very high weld porosity, indicating that gross con-

tamination of aluminum with hydrogen might cause weld porosity.

Commercial Materials. The portion of the program that used com-

mercial materials was analyzed by stepwise regression techniques to yield an

equation linking the weld porosity to base metal composition. The results of

the analyses for each thickness of the 2014-T651 and 2219-T87 alloys were

combined and are presented in Table VII. 5 Increasing amounts of magnesium,

manganese, titanium, and internal hydrogen contents were all related to

decreasing porosity in 2014-T651. For 2219-T87, increasing amounts of zinc,

magnesium, zirconium, internal hydrogen, and titanium were all related to
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TABLE VII. VARIABLES STUDIED WHICHMOSTSIGNIFICANTLY
AFFECTED WELD POROSITY

BasePlate
Alloy

2014-T651

2014-T651

2014-T651

2014-T651

2219-T87

2219-T87

2219-T87

2219-T87

2219-T87

2219-T87

Variable

Mg x Mn

Mn x Ti

(Fe) 3

(H2 ) 2

Zn

Mg

Mn x Fe

Zr

(H2) 3 or (H2) 2

Mg × Ti

Relative Strength

of Relationship

lor2

lor2

3

4

1

2, 3, or 4

2, 3, or 4

2, 3, or 4
5or6

5or6

Coefficient

Sign*

m

+

i

w

+

'.',The coefficient sign indicates whether increasing amounts of the

variable were associated with increasing (+) or decreasing (-)

weld porosity.

decreasing weld porosity. For both alloys, increasing iron content was related

to increasing weld porosity. Copper and silicon were not found to be significant

factors for weld porosity. These observations were all made for welds that

contained a "base-line" amount of hydrogen porosity due to the shielding gas

dewpoint of 0 ° F.

c. Observations

During the program, a large number of observations were made

that were of interest. The most important are summarized below.

A tendency for the pores to line up along certain planes was noted, both

in the experimental and commercial materials. Figure 9a shows a transverse

cross section that contained pores lined up along bands of segregation. 4

Figure 9b shows a longitudinal section of the weld with the pores again occurring

preferentially in bands.

A second observation was the formation of voids within the base plate

due to the heat of welding. Figure 10a shows the typical structure of a full-

penetration weld bead in 2014-T651 plate. 5 Voids are visible beyond the fusion

zone of the plate. In another weld, when the welding arc was maintained with
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no travel movement for about 15 sec, very large base-metal voids formed for

some distance beyond the weld as shown in Figure 10b. The weld fusion zone

is enclosed by a dotted line.

Figure 10a also shows the structure containing growth twins found in

the weld center. Interestingly, these grains did not form until about 6 in. of

weld had been made. No hardness differences in the weld center were detected

when this structure appeared.

One composition of 2014-T651 had a fine-grained structure that was

unlike the typical 2014 weld structure shown in Figure 10a. The cause for the
structure difference was not determined.

Autoradiography was studied to determine whether radioactive hydrogen

could be introduced into a weld to study the occurrence of hydrogen in solution.

Several welds were made in helium containing tritiated water vapor at a dew-

point of 25°F. The radioactivity of the tritiated water vapor was 10 mCi/grain.

The activity of the tritiated water was not high enough to reveal much informa-

tion on a micro or macro scale. The procedure used was feasible and would

probably have yielded more results if more active tritiated water vapor could
have been used.

During welding, it was also observed that oscillographic traces of arc

voltage and arc current developed sharp inflections whenever the shielding gas

was contaminated by water vapor. It was suggested that this could be a useful

method of detecting arc contamination.

d. Analysis and Evaluation of the Battelle Study on Base-

and Filler-Metal Composition on Porosity

The conclusions drawn by the Battelle investigators are

summarized in the Appendix. The integrator's discussion of important findings
follows.

The major conclusion obtained in this two-phase study is that the

alloying elements, impurity elements, and internal hydrogen contents in the

ranges studied had little significant influence on weld-metal porosity. When

moisture was added to the shielding gas, certain compositions formed more

weld porosity than others, but there were no large variations from the average.

The Battelle investigators recommended thatno changes be made in the com-

position of 2014-T651 and 2219-T87 to make the alloys less sensitive to weld
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porosity, becausetheir composition was no more than a secondary factor in the
formation of weld porosity. On the basis of experimental data obtained, the
conclusions and recommendations given by the Battelle investigators appear to
be valid and soundly based.

4. Mechanisms of Porosity Formation

Mechanisms of porosity formation were studied at Douglas under
Contract NAS8-11332.

a. Background and Technical Approach

A previous work by Saperstein, et al. 2i provides important

background on this subject. This study investigated the effects of various

factors on porosity. These included moisture content of helium-argon shielding

gas, travel speed, and arc length. Welds were made in Type 3003 plate by the

GMA process.

Figure 11 shows the effect of shielding-gas dewpoint on porosity forma-

tion, as determined in this stu_ty. 2t Each data point represents a single test
weld, except where otherwise noted. The dewpoint threshold for porosity

formation was approximately -40°F for both travel speeds. Porosity content

seemed to increase exponentially as the dewpoint increased above -40°F.

An effort was made to correlate welding parameters to porosity. The

mathematical analysis of heat flow in weldments developed by Rosentha124 and

Adams 25 was used. Adams developed expressions for weld-cooling rates in the

case of two-dimensional heat flow from a point heat source moving linearly with

constant velocity in a flat plate. The cooling rate at the fusion interface (on

the solid side) is given by the following expression:

P = cooling rate parameter = EI \w, min "
(3)

The cooling rate on the solid side of the fusion-line interface is directly pro-

portional to the solidification time per unit volume on the liquid side.

(Solidification time is the elapsed time between the liquidus and solidus tem-

perature. ) Since pores form during solidification, the cooling-rate parameter

represents a convenient measure of porosity.

Many test welds were made to establish a correlation between the

cooling-rate parameter and porosity. Figure 12 shows a typical dependence

between percent porosity and the cooling-rate parameter. 2t
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I

o

C.

investigators.

regression equations were obtained:*

Results Obtained

Experimental data were analyzed statistically by the Douglas

For data on 2219-T87 static welds made in Phase I, the following

Vl --

Y2 =

Y3 =

where

0.4+ 0.0124X 1

6.2 - 0.024 X 1 + 0.000048 Xl 2

-161.8+ 1.590X 1- 0.451X 2+ 22.05X 3

-0.735 X 4 - 355.8X 5 - 0.00282 X1X 2

-0.0882XIX3+ 2.23 X2Xs+ 1.47X4X 5

64,420+ 1200X 1- 2.4X12Y5 --

Y1 = porosity determined gravimetrically, percent

Y2 = time to reach the thermal arrest, or solidification time, sec

Y3 = hydrogen content in the weld metal, ppm

Y_ = number of pores in a volume equivalent of 1 g of weld metal

X 1 = water vapor present in the shielding gas, ppm

X 2 = measured arc current, amp

X 3 = measured arc voltage, v

X 4 = arc-exposure time, sec

X_ = thickness of base plate, in.

Figure 13 was prepared by combining Eq. (6} and (8}. 6 Shown in the

figure is the relationship between the inverse square of solidification time,

(1/Y22), and Y_/Y2, which was considered as the pore nucleation rate, N.

*It was found that the dendrite spacing, Y4, was not a function of the

independent variables.

(5)

(6)

(7)

(8)
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Figure 14was prepared by combining Eq. (5), (6), and (8). _ Shownin the
figure is the relationship between the squareof solidification time, (Y22), and

1
Y_.t × __ which was considered as the pore growth rate, G.
Y5 Y2
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Similar statistical analyses were conductedon data for bead-on-plate
welds made in Phase II.

d. Analysis and Evaluation of the Douglas Study on Mechanisms

of Porosity Formation

The conclusions drawn by the Douglas investigators are sum-

marized in the Appendix.

During the course of this study, questions were raised about the way

conclusions were being drawn from experimental data. The conclusions reached

by the Douglas investigators have been considered questionable, and they are

not used in any conclusions or recommendations for this report.

5. Use of Hydrogen Getters for Reducing Porosity

A literature study and welding experiments were performed at
Southern Research Institute under Contract NAS8-20307 to determine the

feasibility of using various elements as hydrogen getters during the gas

tungsten-arc and gas metal-arc welding of aluminum alloys.

The project was originally divided into the following four phases:

Phase I. Literature and theoretical study to select the most promising

elements to be used as getters.

Phase II. Preliminary evaluation of the selected elements by means of

rapid melting operations simulating weld heating cycles.

Phase III. Evaluation of methods for applying the promising elements,

using arc spot welds made with GTA and GMA welding

techniques.

Phase IV. Evaluation of the most promising elements and application

methods on 36-in. long welds.

However, Phases II and IV were discontinued. Therefore, this report

covers Phases I and III only.
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a. Phase I. Literature and Theoretical Study

It was determined from a survey of the literature 26-29 that

hydrogen is chemically able to combine with almost every element to form

binary compounds. These compounds are divided into three groups: the

covalent hydrides, the saline hydrides, and the transition-metal hydrides.

The covalent hydrides are formed by the elements B, C, N, O, F, Si,

P, S, C1, Ge, As, Se, Br, Sn, Sb, Te, I, Pb, Bi, and Po. The elements

Cu, Ag, Au, Zn, and Hg form an intermediate type of hydride that is neither

pure ionic nor metallic bonded but tends to have the characteristics of the

covalent hydrides. Therefore, this type hydride was included with the covalent

hydrides for consideration in this study. In their natural state covalent

hydrides are usually in either liquid or gaseous form. Since it was considered

likely that liquid or gaseous hydrides would be detrimental if mixed into the

weld puddle, these elements were eliminated from further consideration.

The saline hydrides are ionic in their bonding and form stoiehiometric

compounds. The elements included in this classification are Li, Na, Mg, A1,

K, Ca, Rb, Sr, Cs, Ba, and Ra. It is probable that the rare earths are also

included in the saline-hydride group.

The transition-metal hydrides are formed by Ti, Zr, Hf, Th, V, Cb,

Ta, Pa, Cr, Mo, W, U, Pu, Fe, Ru, Os, Rh, It, Ni, Pd, Co, and Pt. These

hydrides exhibit metallic bonding and nonstoichiometric compositions depending

upon the exposure time to hydrogen, temperature of reaction, and past history
of the element.

It was decided to select four of the promising elements for experimental

investigation of their hydrogen-getting abilities, one from the saline group, two

from the transition metals, and a rare earth. Calcium was chosen to represent

the saline group because it was more readily available and presented less

stringent handling requirements than Ba and Sr. Of the transition metals,

Ti and Zr were chosen because of their availability and lower cost in com-

parison to Hf. Mischmetal, a mixture consisting of approximately 50 percent

cerium and other rare-earth metals (principally lanthanum and neodymium),

was chosen to represent the rare earths.

b. Phase III. Evaluation in Arc Spot Welds

The specimens used for evaluation were 1-1/2 by 3-in.

rectangles of 2014 and 2219 alloy plates 3/4-in. thick. On most specimens,

a GTA spot weld was made at the center of the specimen.
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The procedures used in connectionwith the getters varied depending
uponthe methodsused for applying the getters. Six different series of welds
were made, vehicle series, small-hole series, depression series, butt-joint
series, first slurry series, and secondslurry series. With the exception of
calcium, the getters were received in forms that necessitated drying procedures
prior to application of the powders. Cerium (Mischmetal), which was
received under kerosene, was given repeated rinses in hexaneand allowed to
dry following the final rinse. The titanium and zirconium powders were
received in a moisturized condition to protect them from oxidation. This
moisture was removed by keeping the powders in a continuously evacuated
dessicator for a period of 24hr. The dried powders were stored in dessicators
under argon atmosphere.

Vehicle Series. The vehicle series of welds was made to determine

whether some materials that might be used to bond the getter material to the

workpiece surface would, in themselves, provide a source of moisture or

hydrogen and contribute to porosity. The vehicles examined were epoxy resin,

Duco cement, lime paste, and ethyl alcohol. These vehicles, alone and in com-

bination with Ti powder, were applied to the freshly scraped surfaces of a

series of specimens and fusion spot welded. In general, all specimens were

welded at 150 or 200 amp, 14 v, and 53 CFH helium gas flow. Welding times

varied depending upon the time necessary to achieve deep penetration into the

workpiece. The helium gas in the dry condition (no moisture added) had a

dew point of -35°F and consistently produced pore-free arc spot welds. On

the basis of preliminary experiments to produce welds with easily detectable

porosity, the moisturized gas was standardized at a + 50°F dew point. When

the specimens had been welded, they were sectioned through the center of the

nugget, wet-ground with silicon-carbide papers through 500 grit fineness, and

visually examined for porosity. The visual results were negative; the addition

of the powder did not result in reduction of porosity. Consequently, it was

decided that the vehicle series would not be subjected to quantitative examina-
tion.

Small Hole Series. The small-hole series was made in an effort to apply

the getters without vehicles and to assure that the getter material would be

incorporated in the molten puddle during welding. In this procedure, eight

0. 073-in. diameter holes were drilled to a depth approximately 3/4 the

thickness of the plate at approximately equally spaced locations on the circum-

ference of a 1/2-in. diameter circle surrounding the center of the location of

the subsequent spot weld. Prior to the welding operation, the specimens were

scraped and the getter materials packed into the small holes. The welding and

inspection procedures were the same as those used for the vehicle series. All

of the welds made with getters were porous even though made with dry gas.

Since some specimens retained unfused portions of the original drilled holes, it

is likely that much of the porosity was caused by entrapped air from the holes.
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Depression Series. The depression series was made in an effort to avoid

the u_e of vehicles and yet apply the getter without installing it into the deep

interior of the specimens. Accordingly, the getters were packed into a shallow

depression made with a 1/4-in. diameter drill to approximately a 1/8-in. depth.

This depression was located at the center of the subsequent weld location. The

same welding and inspection procedures used for the two previous series were

used on these welds. Welds in this series were made with dry gas first with

inconclusive results. The welds made with moist gas were all porous. How-

ever, the results could not be considered conclusive because the arcs struck

directly on the getters were erratic, and there was some doubt about whether

the getters remained in position long enough to be effective.

Butt-Joint Series. The specimens were cut in half along the transverse

centerline and then rejoined with an arc spot weld. The getters were placed on

the end faces to be butted together and were held in place by clamping the two

pieces tightly together in the vise. An additional getter, barium, was included

in this series to determine whether it might react more favorably than calcium.

Although all but two specimens were welded with dry helium, only one specimen

appeared to be relatively pore free. In addition, it was difficult, especially

with Ti, to fuse the joint together. The arc tended to melt the aluminum on

either side of the getter layer but the molten material would not penetrate

through the unmolten getter to form the joint.

The First Slurry Series. The first slurry series was planned in an

attempt to overcome the problems that had prevented the attainment of uniform

welding conditions in the previous experiments. As a first criterion, it was

decided that the getter should be applied only to the scraped surface and not

packed in prepared holes or depressions. Since no suitable vehicle had been

found to bond the getters, and since dry getters would not adhere sufficiently,

the powdered getters were moistened with distilled water to form a slurry,

which was then applied to the specimen surface with a small brush. The

specimens were then placed on a 250°F hot plate and heated until all visible

traces of moisture were gone. The dried, getter-coated specimens were stored

in a dessicator while awaiting the welding operation. On the day of the welding

run, these specimens were placed in an oven at 400°F and allowed to remain

heated for at least one hour before the first specimen was removed for welding.

Photographs of cross sections of the welds are shown in Figure 15, and

the results of the porosity measurements are shown in Table VIII. 8 There were

two ungettered welds, No. 133 and 134. The ungettered weld made with dry

helium (No. 133} contained very little porosity. The ungettered weld made with

moist helium (No. 134) was porous, and all of the gettered welds contained

porosity. Each of three additional getters {No. 139, 140 and 141) produced

greater porosity than the original four, although Ca (applied as lime) had
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TABLE VIII. RESULTS FROM FIRST SLURRY SERIES

Spec

No.*

133

134

135

136

137

138

139

140

141

Getters **

None (dry gas)
None

Titanium

Zirconium

Cerium

Lime

Sulphur

Sodium borate

Sodium nitrate

Porosity

(%)

3.2

39.8

35.4

33.4

29.4

43.8

45.5

45.0

50.0***

Largest
Pore Dia

(in.)

0.00275

0.0159

0.0205

0.0291

0.0370

0.0376

0.0615

0.0511

0.0199

Joint t

Temperature

(°F)

869 _t

791

851

89O

874

812

789

827

715

*All welds made with 14 v and 150 amp for 7 sec.

**All welds made with + 50°F dewpoint helium except No. 133 and with

-35°F dewpoint. Gas flow was 53 CFH for all welds.

***Average of one reading of 25.6% porosity at centerline vertical traverse

and one reading of 74.3% porosity with vertical traverse made at the

area of maximum porosity.

1"Average temperatures from two thermocouples on bottom of nugget
1/4 in. from centerline.

J"t Reading from one thermocouple only. Other thermocouple become

detached during welding.

nearly as much porosity. Although the relationship was not visually evident

in Figure 15, the quantitative measurements showed the welds made with

Ti, Zr, and Ce (No. 135, 136, and 137) to have less porosity than the ungettered

specimen welded with moist gas (No. 134), as shown in Table VIII. These

results indicated that some benefit was derived from Ti, Zr, and Ce, but

porosity was only slightly reduced not eliminated.

Second Slurry Series. The second slurry series was performed to

check the previous results with Ti, Zr, and Ce, and to investigate a large

number of other elements and compounds for their capabilities as getters.

This series was performed in the same manner as the first slurry series,

except that equal volumes of the getter materials were used in making the

slurries, and the slurries were applied to the electrodes as well as to the

specimens.
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The percent porosity in welds madewith Ti, Zr, Ce, and Ca as getters
was approximately the same as in the first slurry series. However, because
there was less porosity in the ungettered specimen than in the first series,
noneof the gettered specimensappearedto have reduced porosity. Several of
the elements and compoundsused resulted in welds with porosity present in the
same range as the Ti, Zr, and Ce specimens. These materials included Fe,

Mn, CuC12, LiC1, NaC1, A1F 3 • 3NaF, MnO, NiO, TiO 2, and CaSi 2. All of the

other getters produced greater porosity, and two of them, A1 and KC1, produced

extremely high porosity.

c. Analysis and Evaluation of the SRI Study on Hydrogen Getters

The conclusions drawn by the Southern Research Institute investi-

gations are summarized in the Appendix. The integrator's discussion follows.

Experiments were made to determine whether porosity could be reduced

by applying hydrogen getters in areas near a GTA arc spot weld. The getters

were prepared in powder form and applied to specimens by various techniques

as outlined in the preceding discussion. None of the techniques proved to be

effective for reducing porosity.

Fine powders have large surfaces compared to their volumes and are

easily contaminated. Air is always present around powders, even when they

are packed. As demonstrated by otherinvestigators in the NASA program,

porosity in aluminum welds can result from very slight shielding-gas impurities

and very minimum contamination of the electrode or workpiece surface.

Findings obtained at Boeing indicate that the existence of only 250 ppm of gas

impurity, or of a single fingerprint on the metal surface, will cause porosity.

At SRI, no measurement was made of the impurities aroundthe hydrogen

getters applied to specimens.

It is the integrator's opinion that SRI work has neither proved nor

disproved whether porosity can be reduced by using hydrogen getters. There-

fore, it may be worthwhile to try a different approach to the problem. Perhaps

an approach would be the use of experimental filler wires containing hydrogen

getters.

6. Effects of Porosity on Weld-J oint Performance

Effects of porosity on weld-joint performance were studied by The

Martin Company under Contract NAS8-11335. The work done at Boeing also
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includes data on the effects of porosity on mechanical properties of welds.
Theseprograms are discussed in this section following a brief general dis-
cussion on the effects of weld defects on the performance of welded structures.

a. General Discussion on the Effects of Weld Defects on the

Performance of Welded Structures

Weld defects such as porosity, slag inclusions, incomplete

penetration, and cracks cause reduction in mechanical properties of welded

joints for two reasons. First, the presence of the defects causes decreases

in sectional areas. Second, stress concentrations take place around the

defects. The extent to which weld defects affect the strength of structures

depends upon the following factors:

1) Nature and extent of defects. Sharp cracks that cause severe

stress concentrations have more significant effects than do porosity

or slag inclusions which cause rather minor stress concentrations.

The effect of the defects on the strength becomes more severe as
the size and number of defects increase.

2) Properties of the material. The properties of a material are

significant factors that determine the effects of weld defects on

the strength of welded structures. When a material is ductile, the

reduction of strength is approximately proportional to the reduction

of cross-sectional area, as described later. For less ductile

materials, the effects of defects become more serious.

3) Type of loading. When the structure is subjected to impact or

repeated loading, the effects of defects on the strength become more

serious than when the structure is subjected to static loading.

Stress Concentrations Around Defects. The shape of a defect and its

orientation to the direction of loading significantly effect stress concentrations
around the defect. 30, 31

Figure 16a, b, and c show stress distributions around a general tri-

axial, ellipsoidal cavity in a homogeneous, isotropic, elastic body of infinite

length which is under a uniform tensile stress, a, at infinity. It is assumed

that the stress at infinity is acting parallel to one of the major axes of the

cavity (z-axis), as shown in Figure 16a. The important stress concentrations

occur along the "equator" ABA'B'A. The curves in Figure 16a show how

rapidly the tensile stresses drop to the average value a within the material.
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The severity of stress concentration is expressed frequently in terms

of the stress-concentration factor, Kt, which is defined as the ratio of the stress

at a point concerned and the stress at infinity, u. Figures 16b and c show

(Y (Y

values of __z and __x (or = 0 at Point B) as a function of the shape ratios
u a y

Pl = b/a and P2 _ c/b.32 The value of Poisson's ratio is assumed to be 0.3.

The curves for P2 = 1 apply to a cavity in the shape of a prolate

spheriod (cigar-shaped cavity). The limiting case of Pl = 0, P2 = 1 can be

interpreted geometrically in two ways. If b is fixed and approaches infinity,

the shape of the cavity approaches that of a circular cylinder of infinite length;

if a is fixed and b and c approach zero, the cavity approaches a line crack.

The curves for Pi = 1 apply to a cavity in the shape of an oblate spheroid

(button-shaped cavity). The case of Pi = P2 = 1 applies to a spherical

cavity. As shown in Figures 16b and c, the stress concentrations are mild

ff
Z

for cigar-shaped cavities, the value of -- ranging between 2.05 (for a

spherical cavity) and 3 (for a long cylindrical cavity). On the other hand,

high stress concentrations occur around a thin, button-shaped cavity having

its surfaces perpendicular to the direction of loading.

Porosity in weld metals in aluminum alloys is spherical in many cases,

as shown in Figures 9 and 10. The porosity may be worm shaped; elongated

in the direction of weld metal solidification. Weld porosity with the shape

of an oblate spheroid is rarely found; porosity rarely contains sharp notches.

Consequently, stress concentrations around weld porosity usually are not very

severe. The values of stress-concentration factors around porosity appear to

be in the cross-hatched areas in Figure 16b--either in the single cross-hatched

areas (P2 > 0.5) or more often in the double cross-hatched areas (Pl > 0.5,

P2 > O. 5) .

Ductile Fracture. Let us consider a case in which a flat plate (width,

B, and thickness, t) containing a circular hole of diameter, d, is under a

tensile load, P, as shown in Figure 17. The average stress, _, and the net

stress, anet, are defined as follows:

P P Aa-- _, (i0)
- A 0' _net = An---et - Ane t
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where

A0 = Bt is the original section area

A = (B-d)t is the net section area.
net

When B/d is sufficiently large, the leastic stress-concentration factor, Kt, is

close to 3. S and S are the yield strength and the ultimate tensile strength of
y u

the materials, respectively.

Curve 1 shows the distribution along line Af at the stress level
S

_=Y
K

t
material.

The magnitude of stress at Point A reaches the yield strength of the
S

If the magnitude of applied stress exceeds -_ plastic deformation
Kt '

takes place in the highly stressed regions as shown by the cross-hatched areas
in Figure 17, and finally fracture occurs. 33

It would be quite unrealistic to assume that fracture occurs at an

S S

average stress of _ . When the average stress is u
_-_, the stress distributionKt

would be as shown by Curve 2 instead of being shown by Curve 2', elastic stress

distribution.34 The stresses in the plastic region (depth, 52) are in the

neighborhood of the yield stress, S , and considerably lower than S .
y u

The stress distribution at fracture would be as shown by Curve 3,

average stress at fracture being crf. The plastic region extends to a depth of

53 . Curve 3' is the imaginary elastic stress distribution at the average stress

of _f. The maximum stress at Point A, Kt, _f, is much higher than S . If the
U

material is ductile (undergoes large plastic deformation before fracture occurs},
the plastic regions extend and the stress concentrations around the defect are
reduced.

However, since the section area along Plane efgh is less than the

original section area, fracture usually occurs when the net stress approaches

Su. In other words, the average fracture stress _f is:
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Anet

_f - Ao Su (11)

The fracture is a shear fracture and propagates relatively slowly.

A number of research programs have been carried out to determine

experimentally the effects of defects on the strength of weldments in various

materials. For example, Kihara, et al.35 have summarized experimental

results obtained from a large number of specimens to show the general tendency

of the effects of weld defects on the static tensile strength of aluminum welds

(Figure 18). The ultimate strength did not decrease appreciably when the

reduction of sectional area due to defects was less than about 10 percent. From

that point the strength decreased gradually as the reduction of sectional area

increased. For example, a 40 percent decrease in sectional area caused

between about 20 and 40 percent decrease in the ultimate tensile strength.
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FIGURE 18. RELATIONSHIP BETWEEN RATE OF DEFECTIVE
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Chemical Composition of the Aluminum Alloy

Specification

ANP-O

Chemical Composition (%)

Cu Fe Si Mn Mg Zu Cr Ti

0.03 0.16 0.09 0.56 4.3 0.02 0.19 Nil.

A1

Bal.
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Unstable Brittle Fracture. Unstable rapid propagation of fracture has

been experienced in a number of welded structures. 36,37 The fracture mechanics

theory developed by Griffith, 38 Irwin, 39,40 and other investigators has been

applied to the study of unstable fractures, especially of those in high-strength

materials for aerospace applications. Figure 19 illustrates typical behavior
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FIGURE 19. UNSTABLE FRACTURE, HIGH-STRENGTH

MATERIALS CONTAINING A CENTRAL CRACK--

EFFECT OF CRACK LENGTH ON STRESS

AT FRACTURE

when a sheet containing a transverse central crack is subjected to uniform ten-

sile loading. For small cracks, fracture strength exceeds yield strength.

Gross yielding is observed in the load-deflection diagram, and extensive

plastic deformation is observed in the fracture surface. However, fracture

from long cracks occurs abruptly with negligible plastic deformation. The

observed fracture stress decreases with increasing crack length. Unstable

fracture occurs when the stress-intensity factor, K, reaches a value, K ,
C

which is characteristic for the material.
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K - o'" _ = K c, (12)

where

a = average fracture stress

a = half crack length.

K is called the critical stress intensity factor or fracture toughness of the
c

material. The critical crack length, _ c' also may be used to characterize the

brittle behavior of the material; when the preexisting crack is shorter than
C'

fracture stress, a, exceeds the yield stress and fracture is ductile. The ASTM

Committee on Fracture Testing of High-Strength Sheet Materials 41 has

described methods of measuring fracture toughness of high-strength sheet metals

(ferrous and nonferrous materials having a strength-to-density ratio of more

than 700,000 psi/lb/in. 3). K c can be determined by fracture tests of notched

specimens.

An important consideration in unstable fracture is that the absolute

size of a flaw is the controlling factor. If the material contains a crack

larger than the critical size, the crack can grow under low applied stress even

though the loss of sectional area due to the crack is minor.

It is known that metals with a body-centered cubic lattice, such as

steels and titanium alloys, are sensitive to unstable fracture, while metals with

a face-centered cubic lattice, such as aluminum alloys and austenitic stainless

steels, are not. Unstable fracture is not a major problem for structures made

in 2014-T6 and 2219-T87 alloys unless they are subjected to cryogenic

temperatures.

b. Research Procedures Under Contract NAS8-11335

Production of Defective Welds. Welds were made in two

materials (2219-T87 and 2014-T6), two thicknesses (1/4 and 3/4 in.), and

three welding positions (flat, horizontal, and vertical). Filler wire used was

2319 with the 2219-T87 material, and 4043 with the 2014-T6 material. Arc

welding was GTA, D-C, straight polarity with helium shielding. Welds had

to be intentionally contaminated to produce porosity. This was done by metering

additions of hydrogen and/or moisture to the shielding gas in the tungsten torch.

However, extensive additions of hydrogen tended to form a large number of
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very fine pores, relative to typical porosity size-frequency distribution in
production welding. In some instances, the porosity was so fine that the X-rays
would have been acceptableby most current standards; andyet the strength
of these welds was appreciably reduced.

Another difficulty was changesin the electrical characteristics of the
arc which were inducedby contamination of the arc atmosphere. Specimens
welded with heavy contamination had poor or nontypical bead geometry.

Defect Classification System. Classification of defects was performed

both before and after destructive testing of the specimen. Nonspecific and

arbitrary levels of porosity were assigned by comparison with an adopted

series of standards. Five levels, 0 through 4, from water clear to quite

bad, were adopted as target porosity levels for specimen production purposes.

Mechanical Property Evaluation. The defective welds were evaluated

by longitudinal and transverse tensile testing and by transverse fatigue testing.

The specimen width of the transverse tensile test was the standard 1-in. wide

specimen for the 1/4-in. stock, and 1-1/2-in. wide for the 3/4-in. stock. The

dimensions for the longitudinal specimen were chosen to insure that weld

metal, heat-affected zQne, and parent metal were inciuded in the load-carrying

cross section of the specimen. The objective was to simulate the stress

picture which a weld sees in the girth orientation of a pressure vessel. In

this orientation, the base plate adjacent to the weld is capable of carrying the

larger part of the load, as long as the (possibly defective) weld metal is able

to elongate and transfer this load to the adjacent base metal. Fatigue specimens

were chosen according to a Martin Company standard (0.3 in. wide in the weld).

c. Results Obtained at Martin Under Contract NAS8-11335

Static Tensile Tests on Transverse Welds. Figure 20 shows

relationships between the porosity level and mechanical properties of

transverse-weld specimens. 9 Shown in the ordinate are the high, medium,

and low values for each porosity level, and the "2a minimum" values of the

following:

1) Ultimate tensile strength

2) Yield strength

3) Elongation for 0.4-, 1-, and 2-in. gage length.
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Different curves are shown for data obtained with specimens with and without
weld reinforcement.

Figure 21 shows that the ultimate strength decreased markedly as

porosity increased. 9 Elongation, especially with a short gage length, also was

affected by the porosity level. The porosity level had the least effect on the

yield strength.

Attempts were then made to determine quantitative relationships between

the porosity level and the ultimate strength. After specimens were fractured,
fracture surfaces were examined to determine the loss of sectional area due

to porosity. All pores larger than 1/64 in. in diameter were counted to
determine the loss of sectional area.

Figure 21 shows data for 1/4-in. thick transverse welds in 2219-T87

(horizontal position). Data for specimens with and without weld reinforcement

are shown. Shown in the abscissa are the total pore areas in terms of equiva-

lent numbers of 1/64-in. diameter pores and the reduction of sectional area in

percent.* Good correlations were obtained between the reduction of sectional

area and the loss of strength. Marked decreases in the strength were observed

on specimens with small loss of cross-sectional area. The Martin investigators

stated that most specimens that showed significant loss of strength had many

fine pores but pores smaller than 1/64 in. in diameter were not counted.

A study also was made of how existing aerospace industry specifications

rate as instruments for predicting mechanical properties. Figure 22 illustrates

ranges of ultimate strength found within welds of given classification levels

according to the ABMA-PD-R-27A, in 2219 and 2014 weldments, respectively. 9

A large amount of scatter in data is noticed. The very low values under

Class I were all taken from samples which contained large numbers of very

fine pores.

Longitudinal Welds. The tensile strength of longitudinal specimens

decreased as loss in cross-sectional areas due to increased porosity. Since a

specimen contained the weld metal and the base plate, the porosity caused

rather minor reduction in sectional area. Even specimens containing extensive

porosity maintained strength over 40,000 psi. The effects of porosity on

elongation and yield strength were minor.

*For example, one pore with 1/32-in. diameter and one with 1/16-in.

diameter are considered to be equivalent to 4 and 16, respectively, of 1/64-in.-

diameter pores.
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Fatigue Results. The results of the reversed-tension fatigue tests*

were evaluated in terms of radiographic porosity counts; this showed that fatigue

life decreased as porosity increased. Figure 23 summarizes results obtained
on all 1/4-in. welds made in different alloys and welding positions. Shown in

the figure are relationships between the pore count and the number of cycles to

fatigue under various stress levels. On the basis of experimental data, lines

indicating the minimum expected life are drawn for three stress levels, 10, 15,

and 20 ksi. For example, a weldment containing twenty 1/64-in. pores per

1/4-in. length may have a life of over 100,000 cycles at 10 ksi, over 10,000

cycles at 15 ksi, over 1000 cycles at 20 ksi, but less than 1000 cycles at 25 ksi.

The reduction of.sectional area due to twenty 1/64-in. diameter pores per

1/4-in. weld is about 6 percent.

The 3/4-in. thick welds showed similar general trends.

d. Analysis and Evaluation of the Martin Study on Porosity

and Mechanical Properties

The conclusions drawn by the Martin investigators are summarized

in the Appendix. The integrator's discussion of significant findings follow.

An important finding obtained at Martin is the significance of small

pores. If the reduction of strength due to a pore is determined by its cross-

sectional area, a pore size which gives the least ratio of cross-sectional area

to volume is to be desired. For a spherical void, the ratio of cross-sectional

area to volume, a, is

7rR 2 3 1
o_ - - (13)

4 _R _ 4 R
3

The value of _ increases when R decreases. Thus, a given volume of contami-

nant gas in a freezing puddle can cause more damage in the form of small pores

than large pores. Experimental results showed that small pores did cause

significant reduction in strength.

However, the reduction of strength due to a small amount of pores

observed during this study was very great, as shown in Figure 21. The author's

interpretation of the experimental results is described briefly in the following

paragraphs.

;'.-'The loading cycle went from a minimum of 10 percent of the nominal

stress to a maximum 100 percent.
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Figure 24 illustrates the relationship between the reduction of sectional

area due to porosity, X percent, and the loss of ultimate tensile strength,

Y percent. Obviously, Y = 100 at X -- 0 (full strength at no defect, point A),

and Y = 0 at X = 100 (no strength at 100 percent defect, point P).
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FIGURE 24. EFFECTS OF POROSITY ON ULTIMATE

TENSILE STRENGTH OF A TRANSVERSE WELD

Curve AB shows a typical result obtained under Contract NAS8-112,?,5.

A small loss of sectional area caused considerable loss of strength; for

example, 5 percent reduction of sectional area caused about 30 percent loss of
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strength. The results obtained are different from those which can be expected

from the theoretical consideration and experimental finding obtained by other
investigators as follows:

1) If the net stress at fracture remains constant, the loss of strength

is proportional to the reduction of area, as shown by line AC.

2) Very small amounts of porosity may have little effect on the

strength. Consequently experimental data may be scattered in the
hatched band on both sides of line AC.

As the Martin investigators stated, a large number of fine pores existing

in the specimens are believed to be primarily responsible for the marked

decrease in strength. If the loss of sectional area due to these fine pores

were added, curve AB would move to the right as indicated by the arrow. "." The

modified curve, however, may be as shown by curve AB', and it may not match

line AC. In other words, the inclusion of the fine pores may not be the only

factor that caused the great reduction in strength. Since the welds were made

using highly contaminated shielding gas, some material degradation may take
place; then the curve would follow line DB'P rather than ACP. It is recom-

mended that additional studies be made on the following subjects:

1) Recount the loss of sectional area by including fine pores

2) Conduct a metallographic study of fractured surfaces to determine

whether welds made with highly contaminated shielding gas contain

unusual structures which may cause further reduction in strength.

e. Results Obtained at Boeing Under Contract NAS8-20168

The major part of Boeing's work under Contract NAS8-20168

has been discussed in Section V-2. However, in Phase II of the program, a

study was made of the effects of gas contamination on mechanical properties

of weldments. The following tests were made:

1) Static tensile tests of transverse-weld specimens

2) Static tensile tests of longitudinal-weld specimens

* Additional analysis by the investigators supports this conclusion.
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3) Fatigue tests of transverse-weld specimens

A statistical analysis was made of the effects of shielding-gas contamina-

tion levels on mechanical properties of welds. The stepwise regression

analysis [Eq. (2) ] was used to determine the relationships between the levels

of the four gases {oxygen, X1; hydrogen, X2; nitrogen, X3; and water vapor, X 4)

and several variables indicating mechanical properties. The results of the

stepwise regression analysis relating weld quality (Yi) to the contamination

levels (X i) are shown in Table V. Values of coefficient of determination, R 2,

are as follows:

1) Transverse-weld ultimate tensile strength: 0. 770

2) Transverse-weld elongation: 0. 684

3) Longitudinal-weld elongation: 0. 670

4) Transverse-weld fatigue cycles: 0. 515

5) Longitudinal-weld ultimate tensile strength: 0. 502

6) Longitudinal-weld yield strength: 0. 249

7) Transverse-weld yield strength: 0. 161

Among the seven properties, the ultimate strength of transverse welds had the

most significant correlation with the contamination level, while the cycles to

failure in fatigue test and the yield strengths of longitudinal and transverse
welds had low correlations with the contamination level.

Static Tensile Test Results. Static tensile test data were statistically

analyzed. When holding other gases at a 5-ppm level, the addition of any gas,

except oxygen, caused decreases in the longitudinal and transverse strengths;

approximately 2 percent at the 500-ppm level. The addition of oxygen had no

significant effect. Individual gases were also added while keeping the level

of other gases at 250 and 500 ppm, respectively. The analyses of tensile tests

in these cases basically indicated decreased strength with increased contami-

nation. Hydrogen and water vapor combinations were generally most

detrimental, causing 20 percent decrease in strength in some instances. In

contrast, oxygen and nitrogen additions increased strength about 1 percent

above the base gas reference under some contamination conditions.
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Fatigue Test Results. Five fatigue specimens prepared from a joint

welded with pure shielding gas were used to establish an S/N ( stress/cycles to

failure) curve. On the basis of the S/N curve, 26,000 psi was chosen for testing

fatigue properties of other welds. Above 26,000 psi, excessive necking down

was experienced in the weld bead region, indicating that the elastic limit had

been exceeded. Below 26,000 psi, the cycles to failure were in excess of

1,000,000 and were unrealistic from the standpoint of time required to test the

samples.

There was extreme variation in the number of cycles between specimens

from the same weldment of specimens with similar contamination treatment.

Statistical analyses were conducted on the correlation between shielding-gas

contamination and fatiguelife. As shown in Table III (Section VI-1), the

correlation was not very significant; the coefficient of determination was 51.5

percent.

The general trend was for fatigue life to decrease as the shielding-gas

contamination level increased; however, in some cases further increase in

contamination resulted in an increase of fatigue life.

f. Analysis and Evaluation of the Boeing Study on Porosity

and Mechanical Properties

The conclusions drawn by the Boeing investigators are

summarized in the Appendix. The trends observed at Boeing generally agree

with the trends observed at Martin. The integrator's discussion of important

findings follows.

The Boeing investigators made statistical analyses on correlations
between

1) The shielding-gas contamination level and porosity level

2) The shielding-gas contamination level and mechanical properties.

No statistical analysis was made between the porosity level and mechanical

properties. Let us consider why mechanical properties of a weld decrease as

the shielding-gas contamination level increases. An increase in shielding-gas

contamination causes more pores in the weld, more loss of sectional area

which results in loss of strength. The correlations between the shielding-gas

contamination level and mechanical properties are indirect. This indirectness

is indicated in the results of the regression analysis. Values of coefficient of
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determination betweenthe shielding-gas contamination level and porosity level
are about80percent, much higher than those betweenthe shielding-gas con-
tamination level and mechanical properties. These results can be explained
in the following way. If the correlation betweenthe shielding-gas contamination
level andporosity is 0.80 andthat betweenporosity and mechanical properties
is 0.75, for example, it could be assumedthat the correlation betweenthe
shielding-gas contamination level andmechanical properties is about 0.60. It
wouldbe worthwhile to investigate the correlation between the porosity level
andmechanical properties.

However, the pore-counting technique such as the one used at Martin
will bemore useful than the above-mentionedstatistical analysis, because the
reduction of strength is controlled by the reduction of sectional area due to
porosity. Further study needsto be made of the relationship between the loss
of sectional area measured on fracture surfaces andthe reduction of strength.
In this study, attention shouldbe directed to whether a small amount of porosity
causesa suddendecrease in strength as observed at Martin.

7. Effects of Time-Temperature Characteristics on Mechanical

Properties of Welds

Effects of time-temperature characteristics on mechanical

properties of welds in high-strength, heat-treated aluminum alloys were

studied at Harvey Aluminum under Contract NAS8-11930.

a. Background and Technical Approach

Jackson 42 has proposed the time-temperature concept to study

the effects of heat input on the strength of aluminum welds. Figure 25 shows

the temperature change during welding of a point in a weldment. Maximum

temperature is defined as the peak temperature which the material being joined

experiences during the welding heat cycle. Time at temperature is defined as

the time that the material being joined is above the temperature that adversely

affects strength properties of the base metal being joined. According to

Jackson, the strength properties of 2219-T87 aluminum alloy are found to be

adversely affected above 450 °F.

An investigation was made to develop relationships between weld heat

input and strength characteristics of 2219 aluminum welds. By the use of

multivariate regression analysis of experimental data, the relationship among

maximum temperature, time at temperature, and mechanical property
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characteristics including yield strength, ultimate tensile strength, and

elongation were determined. The results indicated that shortening the time-

temperature cycle through the critical ranges (solidification and overaging)

improves mechanical properties of weldments in 2219 aluminum alloy. Attempts

were being made under Contract NAS8-11930 to improve weld properties by

shortening the time at temperature by impingement of a cryogenic liquid on

the weldment during welding.

b. Survey of Literature and Industry

A literature and industry survey was made to determine the state

of the art, to avoid duplication of effort, and to obtain any information that

might be useful in this program. It was determined that this program did not

duplicate any previous work, and that the approach of supercooling had merit.

Some theoretical background in heat transfer applicable to welding {unsteady

state with a moving, single-point heat source) was obtained.

c. Experimental Procedures

Materials selected for the experimental work were aluminum

alloys 2219-T87 and 2014-T6 in plate thickness of 5/16 and 1/2 in. The
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welding process selected was gas tungsten-arc welding, D-C, straight
polarity with helium shielding gas welding donefrom one side in the horizontal
position using 2319filler wire for both alloys. Onepass was prescribed for
the 5/i6-in. material andtwo passes for the 1/2-in. material.

Experimental equipment and procedures were developedfor welding
12- by 48-in. panels with sufficient instrumentation to monitor pertinent heat
input andextraction variables. Weldment temperatures were measured by
thermocouples embeddedin the plate. Limited investigations were conducted
for measuring weld temperatures by means of infrared radiometers.

Two series of welded panels were fabricated. They were bead-on
plate andsquare-butt welds. Table IX showstypical welding parameters.
of eachseries was welded without chilling andhalf with liquid CO2chilling,

Half

TABLE IX. TYPICAL WELDING PARAMETERS
USEDIN THE HARVEY ALUMINUM STUDY

Penetration Pass Filler Pass
Plate

Thickness
(in.)

5/16

1/2

Arc

Current

(amp)

215-220

320-325

Voltage

(v)

11

11

Travel

Speed

(ipm)

7-10

7

Wire

Speed

8O

None

Are

Current

(amp)

3OO

Voltage

(v)

11

Travel

Speed Wire

(ipm) Speed

18 120

attempting to maintain comparable weld-bead dimensions. In the first series,

chilling was effected from the back side of the weldment using a double layer

of glass tape to prevent deformation and contamination of the underbead by the

liquid CO 2. In the second series, weldments were chilled from the front

(torch) side using a shield to prevent leakage of CO 2 into the arc area.

Several systems of jet orifice sizes and arrangements were used for each

series.

Comparable unchilled and chilled weldments for both series were

examined by X-ray, fracturing, and macroseetioning. Tensile tests were

performed after natural aging, artificial aging, and after reheat treating to

the T-6 condition.
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d. Experimental Results

Thermal Cycle Curves. Figure 26 shows examples of thermal

cycle curves for points at 3/8 and 3/4 in., respectively, from the weld center-

line on 12-by 48-in. butt welds in 1/2-in. thick 2219-T87 plates. 10 Data are

compared for the unehilled weld and the weld chilled with the Jet System No. 14.*

The chilling resulted in rapid cooling of the weldment.

Macrosections. In most cases, the macrosections showed that chilling

reduced the extent of the heat-affected zone, and reduced the grain size of the

cast structure. For example, Figure 27 shows comparisons of macrosections

of the unchilled and the chilled weld in 1/2-in. thick 2219-T87 plate. 10

Tensile Properties. Specimens were selected from chilled and unchilled

weld panels of each alloy and each thickness for room-temperature tensile tests.

The selection was made on the basis of X-rays which indicated less than 1 per-

cent porosity. All specimens were cut to 3/4-in. wide straight-sided bars

with the weld transverse and weld bead intact. One group of specimens from

each panel was artifically aged to the -T6 condition after welding. All tests

were performed at room temperature.

Table X summarizes average tensile values obtained for artifically

aged specimens, and Table XI shows such values for naturally aged specimens, l0

Yield strengths are substantially increased by chilling from the front

side. The greatest increase in average values was 17.8 percent for artifically

aged welds in 1/2-in. 2014-T6 plate. The greatest increase in average yield

strength for welds in 2219-T87 plate was 8.8 percent (for welds in 5/16-in.

artifically aged specimens}.

Efforts were made to correlate strength with effective heat input by

calculating a theoretical effective heat-input value for the chilled welds using

a formula based on a ratio of the cooling rates affected for each weldment.

While a relationship between heat input and tensile strength appeared to follow

a somewhat consistent pattern for unchilled welds, no such correlation could be

obtained for chilled welds. Undoubtedly some pattern exists, but sufficient

testing has not been accomplished in this project to determine the relationship.

*Jet System No. 14 was designed for front-side chilling, using a

cryogenic liquid. It utilized a traveling shield with a spring-loaded, metallic

wool-and-wire brush seal and a metallic-shirt, 7-jet manifold for helium

purging.
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Porosity. Comparison of X-rays of the initial series of welds chilled
from the front side with unchilled welds indicated some decrease in porosity

for the chilled welds. Approximately 60 percent of the unchilled weld samples

contained porosity ranging from 1/2 to 20 percent of the cross-sectional area,

while more than 90 percent of the chilled welds were free of porosity.

Distortion. Several panels fabricated by chilling from the front side

remained essentially flat after welding, exhibiting almost no longitudinal bow

or peaking. Unchilled weld panels have contained a longitudinal bow up to

1-1/2 in. and peaking to 10 deg, depending upon the amount of heat input.

e. Analysis and Evaluation of the Harvey Aluminum Study on

on Time-Temperature Control

The conclusions reached by the Harvey Aluminum investigators

are included in the Appendix of this report. The integrator's discussion and

analysis of the program follows.

The results and conclusions obtained by Harvey appear valid. The

integrator would agree with these conclusions up to the point that they recommend

that chilling should h_ve application in production welding and should be

investigated further. This conclusion is based on the improvements in yield

strength and porosity level brought about by chilling. There is no question

that these improvements exist, but there are definite reservations as to their

significance. The strength increases shown generally range from 5 to 10 percent.

These increases are not considered significant unless they occur in a very

critical range.

On the basis of data shown in Figure 2, the increase in strength due

to cryogenic chilling would be more significant when welds are made with lower

heat input. From the practical viewpoint, attempts should first be made to

improve weld strength by decreasing weld-heat input. Further increase of

strength due to cryogenic chilling would become worthwhile when adequate

means for reducing heat input cannot be found.

The cryogenic chilling may prove to be an effective way for reducing
distortion. Further studies are needed on this effect.

Regardless of their significance, these improvements due to cryogenic

chilling will be accomplished at the risk of (1) contamination of the weld by the

cooling jet and (2) contamination of the weld by water condensation on the

surface. It has been shown in the Boeing report that even the contamination

from a single fingerprint can cause a significant increase in porosity.
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Certainly, any steps that risk weld contamination shouldbe carefully con-
sidered. And, it shouldbe noted, that althoughthese welds were apparently
well shielded, they were bead-on plate and square-butt welds. Production
welds will be much more difficult to shield in any practical manner.

8. Transferability of Setup Parameters

Transferability of setup parameters was studied by Lockheed-Georgia

under Contract NAS8-11435. Analysis was made of GTA and GMA welds made

in the horizontal position. The work was thermally insulated from the holding

fixture to simulate the minimum tooling, tack-up welding technique very often

used in the aerospace industry. No hard tooling or inert gas back-up was used.

Welds were made in 1/4- and 3/4-in. thick, 2219-T87 aluminum alloy. All

joints were prepared with square-butt edges. The shielding gas was helium.

a. Phases and Experimental Design

The welding test program included two phases. In Phase I, GTA

welding parameters and their effect on the response variables were evaluated.

The welding setup parameters investigated were current, voltage, weld travel

speed, wire deposit, gas purity, gas flow, temperature of the weldment, joint

design, and electrode tip diameter. These setup parameters were referred to

as the independent variables for the GTA welding process. Table XII lists

symbols and units used for independent and dependent variables by the Lockheed

investigators, t2 Figure 28 defines by illustration those variables related to

weld cross section and penetration.

A complete factorial for these nine independent variables at two levels

requires 29 = 512 test conditions. In this study, a 1/16-fractional factorial

requiring 32 test conditions was used. Four additional test conditions were

used to improve the accuracy of statistical analysis. The effects of the

independent variables on various weld characteristics were studied by statistical

analysis using regression equations. Phase II of the project dealt with the

GMA welding process. The design principles were the same as for GTA,

except that fewer setup parameters were required. There were only five basic

parameters investigated for the GMA process, current, voltage, weld travel

speed, angle of the torch, and the distance from the contact tube to the work.

A one-half replication of the five variables with all two-variable interaction

being measurable was used for the GMA study.
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TABLE XII. SYMBOLSAND UNITS FORVARIABLES
USEDBY THE LOCKHEED INVESTIGATORS

Symbols Description and Units for Computer Use

C

V

T

Wd

Gp

Gf

oF

J

D

M

Mc

Mf

H

P

B

Ep

X

Mt

Welding arc current

Welding arc voltage

Travel speedof the arc

Volume of filler wire deposited per
inch of weld

Gaspurity - total ppm contamination

Gas flow - cubic feet per hour

Work temperature before welding

Joint gap

Diameter of electrode at the tip

Cross section area total of melt zone

Cross section area of crown

Cross section area of fall through

Cross section area of heat-affected zone

Penetration of melt zone from part
surface

Height of the crown

Electrode position from part surface

Percent of porosity reading

Maximum temperature reading

(amp/100)

(v)

(ipm)

(in. 3 x lO0/in.

(ppm/100)

(cfh/lOO)

(°F/100)

(in.)

(in.)

(in. 2)

(in. 2)

( in. 2)

( in .2)

(in.)

(in.)

(in.)

(%)

(°F/100)
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TABLE XII. (Concluded)

Symbols Description and Units for Computer Use

Tt

At

Ftu

Fty

E

Q

A

CP

Time temperature exceeded 450 ° F

Area under temperature curve above
450°F

Ultimate tensile strength

Yield tensile strength

Elongation

Overlap of welds from both sides

Angle of GMA torch

Distance from contact tube to work

(sec)

(in. 2)

(ksi)

(ksi)

(70)

(in.)

(deg)

(in.)

* s o ° • • • ° • P

FIGURE 28. ILLUSTRATED DEFINITIONS OF VARIABLES

RELATED TO WELD CROSS SECTION AND PENETRATION

99



b. Welding Test Procedure

Facilities and Equipment. The following two welding units were

used in the program:

1) Welding Unit No. 1

Power: Sciaky Model S-6, functional control, D-C

welding power source

Head: Airco Model HME-E, automatic head

Carriage ! Lockheed-developed carriage controlled by a

Servo-Tech techometer feedback governor

Wire feed: Airco Model AHF-B feedrolls with

Airco Model AHC-B feedback type governor
control

Instrumentation: Texas Instrument "Servo/riter" 4 channel

potentiometric recorder

2) Welding Unit No. 2

Power: Sciaky Model S-6, functional control, D-C

welding power source

Head: Precision Sciaky (GTA-GMA) welding head

with proximity head control

Carriage: Servo-Tech control system to operate a

Lockheed designed carriage

Wire feed: Airco AHC-B wire feed control with

tachometer feedback governor

Instrumentation: Minneapolis-Honeywell "Electronic 17"

four-channel potentiometric recorder

Electrode Proximity Recording System. It was necessary to better

understand the relationship between the welding voltage or arc-length control

of the GTA process and the proximity of the torch to the work. A new system

developed by Lockheed was used to continuously monitor the electrode proximity.

This system operated independently of the arc voltage. The electrode position
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was measured by the potentiometric recorder, and charted with the welding

voltage.

c. Welding Parameter Control Development

Welding Control Studies. During many tests, the electrode

position was held constant. With this condition, both the voltage and depth of

penetration were erratic. However, when the voltage was held constant with an

automatic voltage-control head, the electrode position was erratic and equally

erratic penetration measurements resulted. It was concluded that neither pre-

sent automatic voltage control nor constant electrode-position control by them-

selves maintain adequate process control of the welding arc and molten puddle.

Another control system had to be applied to hold a constant electrode position

(Ep) in addition to a constant current (C), constant voltage (V), constant

carriage travel speed (T), and constant filler-wire deposit rate (Wd). The

wire-feed system used was reasonably accurate and reliabile; therefore, no

attempt was made to couple this system to the other systems influencing the

welding arc process. All of the systems used, in various ways, incorporated

the other four welding variables. All of the systems were designed to be

regulated by equipment settings and still maintain process control of the

welding arc and the molten puddle. Cross-coupled feedback controls were

defined as controls used for measuring the response of one variable and to

simultaneously change the settings of another variable. For example, a

change in Ep causes a change in C. Self-coupled feedback controls were defined

as controls used to measure the response of a variable and to adjust the controls

of that same variable until the response agrees with the desired set point. For

example, if Ep deviated from the set point, the error was measured on the

recorder, amplified, and used to operate a servo system bringing Ep back to

the set point. The basic difference in these two feedback systems was the

source of the feedback information. The cross-coupled system depended upon

the response of another variable caused by a change in the welding process,

while the self-coupled system was a direct measure of the response, independent

of all other variables necessary to make up the welding process.

The following six welding control systems were examined:

1) Automatic voltage control

2) Automatic electrode-position control

3) Carriage d6ntrol coupled to electrode position
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4) Current control coupledto electrode position

5) Current control coupled to voltage

6) Self-coupled feedback.

The first three systems were evaluated and considered inadequatefor
accurate control of the welding process. Tests with the last three systems
indicated that they might be capable of maintaining process control of the arc
andthe molten puddle.

Electrode Position Alignment and Distance From Work. During the
first 1/4-in, test series of horizontal welds, the electrode was centered over

the joint; however, in the welded cross section the melt zone was not sym-

metrical about the centerline of the electrode. In fact, the point of maximum

penetration was approximately 0. 075 in. above the electrode centerline, as

shown in Figure 29.12 Although Figure 29 shows cross sections of welds

3/4 in. thick, similar phenomena were observed in welds 1/4 in. thick. In

several specimens, although penetration was complete, the melt zone did not

cover the entire joint. New specimens were welded to replace these joints.

During all further welding of 1/4-in. thick material the electrode was centered

0. 075 in. below the joint. Additional tests were conducted to further evaluate

this phenomenon.

Welds in the 3/4-in. thick plate were made from both sides. As in the

1/4-in. welds, a nonsymmetrical melt zone often caused lack of penetration.

For example, Weld No. U154 ST, shown in Figure 29a, had sufficient

penetration to indicate overlap, but again the melt zone did not cover the joint.

This condition Could not be detected in X-ray inspection, nor was it observed

during fixed 3X photographic examination of the cross section. It became

apparent in the fracture surface of the tensile-test specimen for which tensile

strength was very low.

Another phenomenon observed during the experiments that will require

additional investigation is the relationship of electrode position and depth of

penetration. Some specimens had considerably deeper penetration on one side

than on the other side, as shown in Figure 29b and c. The welds on each side

of the plate were set up with identical weld parameters and examination of

recordings confirmed that these setups were actually established. In some

cases the second weld had less penetration than the first weld, while the

reverse was indicated in other tests. It was found that in almost all cases

with less penetration, the electrode position was deeper. The electrode

position for these welds was controlled by the automatic head to maintain a
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constant arc voltage. In every case, the arc voltage readings were stable and

accurately controlled at the correct settings. However, the electrode position

recording was erratic in most cases.

The Lockheed investigators concluded that (1) with a given welding

setup and with automatic voltage control, the deeper electrode position indicates

that a hemispherical arc cavity has developed that will result in a reduction of

penetration and (2) variation in penetration due to changes in electrode position

is as great as that due to changes resulting from the classic parameters.

Other Problems. Investigations also were made of various other

problems including:

1) Accuracy of inert-gas flowmeter

2) Variation in tungsten-electrode resistance

3) Variation in torch resistance

4) Shielding gas contamination

5) Effect of tungsten electrode on welding parameters.

d. Statistical Analyses of the Effects on Welding Parameters

on Weld Qualities

Procedures. Table XIII shows three values for each of nine

independent parameters used for GTA welds in 1/4- and 3/4-in. plate. A

constant-current, voltage-control GTA system was used. Table XIV shows

how the nine parameters were changed in the experimental design for each of

36 specimens. The letters H (high), M (medium), and L (low) are used to

represent the value for each parameter as shown in Table XIII.

Table XV shows values of parameters used for GMA welds in 1/4-in.

plate. The variables were changed in the three levels shown so that welds were

made under 21 different conditions.

Figure 30 shows how specimens were prepared from both GTA and GMA

welds. 11 Three tensile-test specimens, one cross-section specimen, and one

longitudinal-section specimen, were prepared from each weld. On all weld-

ments the following 14 responses were measured: ultimate tensile strength

( FTV), yield strength ( FTY), elongation (E), melt area (M), melt crown
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TABLE XIV. EXPERIMENTAL DESIGNSFOR GTA WELDS
1/4 AND 3/4 IN. THICK

Weld
Sequences C

1 L
2 H
3 M
4 L
5 L
6 L

7 H
8 L
9 H

10 M
11 L
12 L

13 H
14 L
15 L
16 H
17 L
18 L

19 L
20 M
21 H
22 H
23 L
24 H

25 L
26 M
27 L
28 H
29 H
3O H

V T Wd GP Gf °F J D

L L H L H L L H
L L H L H H H L
M M M M M M M M
L L L H H L H L
H L L H L L L H
L H H H L L H H

L L L H H H L H
H H L L H L H H
H L H L L H L H
M M M M M M M M
H L H H H H H H
H H L H L H H L

L L L L L L L L
L L H H L H L L
H L L L H H L L
H H H L L L H L
H H H L L H L H
L L L L L L L L

L H L H H H L H
M M M M M M M M
H H L L H H L L
H L H H H L L L
H H H H H L L L
L H L L L H H H

L H H L H H H L
M M M M M M M M
L H L L L L L L
H H L H L L L H
L H H L H L L H
L H H H L H L L
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TAB LE XIV. (Concluded)

Weld

Sequences C

31 L

32 H

33 H

34 H

35 L

36 H

V T

L L

L L

L L

L H

L L

H L

Wd GP

L L

H H

H H

L H

H H

L L

Gf

L

L

L

H

L

H

oF

H

L

H

L

L

L

J

H

H

H

H

H

H

TABLE XV. PARAMETERS FOR GMA WELDING 2219-T87

ALLOY 1/4 IN. THICK

D

H

H

L

L

L

H

Arc current

Arc voltage

Travel speed

Torch angle

Distance from contact

tube to work

Code Letter High Medium Low

C

V

T

A

CP

210

24.5

26

20

0.500

2O0

23.5

24

10

0.450

190

22.5

22

0

0. 400

area (Mc), melt fall-through area (Mf), heat-affected area (H), penetration

(P), build up (B), electrode position (Ep), porosity (X), maximum tempera-

ture of back bead (Mr), time above 450 ° F (Tt), and area under temperature

curve above 450 ° F (At).

A multiple stepwise regressive analysis was made, using an IBM 7094

computer to determine the correlation between the independent variables and

each of the responses.

Results of Statistical Analyses. Table XVI summarizes results of the

regression analyses. Regression equations and the coefficient of determination,

which is the square of the multiple coefficient, are shown. For example, the

ultimate tensile strength, Ftu, of the 1/4-in. welds is
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Ftu = 446.1- 21.62 (T) + 9.247 (C:T) -172.9 (C)

- 60.02 (T. D) + 1138 (D) - 0.2276 (T • Wd) (14)

where,

Ftu = Ultimate tensile strength, ksi

T = Travel speed, ipm

C = Arc current, amp/100

D = Electrode tip diameter, in.

Wd = Volume of filler wire deposited per inch of weld, in.3 x 100/in.

The coefficient of determination in this case was 86 percent; i. e., the variables

expressed in the regression equation accounted for 86 percent of the variation

observed in Ftu. Regression equations are not given in Table XVI for those

items with less than 50 percent coefficient of determination.

In reviewing the regression equations, it was noticed that travel speed

(T) is a significant parameter for many responses, especially for GTA welds.

Table XVII shows the most significant parameter for each response and the

percentage of response explained by that parameter. Travel speed was the

most significant parameter for 5 of the 6 responses listed for 1/4-in. thick

welds and 6 of the 8 responses listed for 3/4-in. thick welds. For example,

Ftu decreased as T increased, and the change in T was responsible for over

40 percent of the changes in Ftu.

On GMA welds, the coefficient of determination was more than 50 percent

for only 4 responses, as shown in Table XVI. The accuracy of the three

equations which had coefficients of determination better than 70 percent, Fty,

Q, and P, are questionable because many terms are involved. For this reason,

the regression analysis for GMA welds are not considered reliable, as pointed

out by the Lockheed investigations.
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TABLE XVII. PERCENTAGEOF VARIATION IN RESPONSE
EXPLAINED BY THE INDICATED PARAMETER
IN REGRESSIONANALYSIS FORWELDS 1/4 AND 3/4 IN.
THICK

Responses

Ftu
Fty
E
M

1/4-in. Thick Welds

Parameter

Percentage
of Response
Explained

43
14

53

3/4-in. Thick Welds

Parameter

T
T

T

e

H T

P T

B Wd

I

Linear effects only are included.

29

30

25

T

Ep

T

T

T

T

T

Wd

Percentage

of Response

Explained

44

41

43

51

58

48

47

30

e. Analysis and Evaluation of the Lockheed Study on Transferability

of Setup Parameters

The conclusions drawn by the Lockheed investigators are

summarized in the Appendix. The integrator's discussion of important findings
follows.

It has been found that in order to transfer weld quality in the GTA

process good instrumentation must be provided for the six basic GTA welding

variables, travel speed, electrode position, current, voltage, gas purity, and

electrode tip diameter, listed intheir order of importance. The instrumentation

should have high resolution, with trace-type potentiometrie recorders

preferred. Where the conditions above are met, along with duplicate conditions

of weld-joint preparation, tooling, and welding position, duplicate trace

recordings indicate duplicate welds.

No definite conclusions have been drawn by the Lockheed investigators

regarding parameters which need to be duplicate for a successful transfer of

GMA welds.
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Integrator's Comments on the Statistical Analysis. Welding engineers

have always needed a reliable, rational means of selecting proper welding

parameters. There are many variables such as welding current, arc voltage,

travel speed, etc., and there are many factors to be considered including

penetration, weld shape, mechanical properties of the joint, etc. So far, the

selection of proper parameters has been made primarily on the basis of past

experience and empirical data. It is very important to develop a scientific

technique for this selection.

There is no doubt that statistical analysis would be useful for analyzing

experimental data. The attempts in this direction by Lockheed investigations

are worthwhile. However, their results are not completely satisfactory.

First of all, results of the statistical analysis are not consistent. This

is shown in the regression equations in Table XV. For example, the ultimate

tensile strength, Ftu, was a function of T, C x T (interaction between C and T),

C, Tx D, D, andT x Wd for 1/4-in. GTA welds ; while it was a function of T,

Ep, V, and Gp for 3/4-in. GTA welds. No significant correlation existed

between Ftu and independent variables for 1/4-in. thick GMA welds. The yield

strengths of welds were functions of the following parameters:

1/4-in. GTA Welds 3/4-in. GTA Welds 1/4-in. GMA Welds

TxD

CxD

T xGp

C xGp

Gt

Ep

T

V

AxCp

A 2

VxA

V 2

A

TxA

A second shortcoming in the statistical analysis is the fact that little

attention was paid to the physics of the problems studied. As an example,

let us discuss problems related to the ultimate tensile strength of a weld. In

the Lockheed study, tensile tests were made on transverse specimens, as

shown in Figure 31. Many welds contained various degrees of incomplete

fusion, as shown in Figure 30. Mechanical properties of such welds should be

determined by the amount of incomplete fusion, which is a mechanical factor,

as well as by properties of the weld metal, heat-affected zone, and the bare

metal, which are material or metallurgical factors. The ultimate tensile
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strength of the well will decrease as the amount of incomplete fusion increases.

It is also known that weld strength in 2219-T87 aluminum alloy decreases as the

weld heat input increases, as shown in Figure 2. These mechanical and

metallurgical factors affect the strength of welds prepared under various

conditions.

Figure 31 shows schematically how welding conditions could affect the

strength of a weldment. When a square butt joint is welded with very low heat

input, low arc current and high travel speed, the penetration is shallow, as

shown in Figure 31a and weld strength would be very low. When a joint is

welded with medium heat input to obtain complete penetration, as shown in

Figure 33b, weld strength would be high. When a joint is welded with high heat

input, excessive penetration results, as shown in Figure 31c, and weld strength

would not be very high, because of metallurgical damages due to the excessive
heat. When welds made from either side are mismatched, as shown in

Figure 31d, weld strength would be very low.

In analyzing effects of welding parameters on the strength of welds, it is

important to separate the mechanical effect and the metallurgical effect. Since

the strength of welds with incomplete penetration has, in this case, no practical

meaning, the analysis should be limited to welds with complete penetration.

However, many welds included in the Lockheed study contained various amounts

of incomplete penetration. Consequently, the usefulness of the regression

equations, shown in Table XVI, on mechanical properties is questionable. For

example, consider the regression analysis of ultimate tensile strength. The

equation indicates that travel speed had the greatest effect on ultimate strength

and that strength decreased as travel speed increased. The results might

actually be due primarily to the fact that the sectional area of the specimen

decreased as the travel speed increased. Further studies need to be made of

physical meanings of regression equations for this and other responses.

9. Magnetic Arc Shaper and Molten-Puddle Stirrer

The use of a magnetic arc shaper and a molten-puddle stirrer for

improving properties of GTA welds was studied by Air Reduction Company
under Contract NAS8-11954.

The work was conducted in four phases as follows:

Phase I. Design and development of equipment

Phase II. Fabrication and testing
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Phase III. Weld evaluation

Phase IV. Equipment refinement.

As of 15 February 1967 Phases I, II, and III had been completed. This

report covers information presented in the Thirteenth Monthly Report prepared

under Contract NAS8-11954 which summarizes the work conducted in Phase III.

a. Technical Approach and Equipment Development

The object of this phase of the program was to apply various

magnetic field configurations to a welding arc and study their effect on weld

bead shape, grain structure, porosity, and mechanical strength, in an effort

to determine if higher quality welds could be obtained. Three modes of

operation were employed.

1) Molten-puddle stirring,

2) Plasma oscillation

a) Transverse

b) Longitudinal

3) Plasma shaping

Figure 32 illustrates the three magnetic field arrangements and the respective

forces that were produced. For the puddle stirrer (Figure 32a) vertical

components of the field interacted with radial components of current flowing

in the puddle to produce a rotational force acting on the molten weld. 13 Reversal

of the field reversed the force, resulting in a rotational oscillating action in the

weld puddle.

In the plasma oscillation mode, two directions of plasma motion were

employed, one in the direction of the weld and one at right angles to the weld

direction (Figure 32b). The fields were directed perpendicularly toward the

plasma current, resulting in forces tending to displace the plasma. An

oscillating motion was obtained by using an A-C field.

Plasma shaping was obtained by applying a four pole D-C field to the

plasma (Figure 32c). This field (250 gauss maximum at pole face), combined

with the field due to the arc current, produced compression forces inward and

perpendicular elongation forces in the direction of the weld, resulting in a

narrower and longer plasma cross section.
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Physical details of the shaper and stirrer coils can be seen in

Figure 33.13 The shaper coil is basically a four pole electromagnet and

performs either the shaping or oscillating function by appropriate connection of

the coils. The stirrer coil is essentially a solenoid of water-cooled aluminum

tubing.

b. Test Conditions

The materials evaluated during this phase were 2014-T6 and

2219-T87 aluminum alloys. Bead-on plate tests were made throughout using

1/2-in. thick plate, 6 in. wide by 18 in. long, unless otherwise noted. The

plates were prepared by degreasing and alkaline cleaning, after which they were

stored in special plastic bags.

A proximity control was added to welding equipment to maintain constant

separation between the head and workpiece. This was chosen over arc-voltage

control since the application of magnetic fields modifies the arc voltage and

results in arc-length changes.

Unless otherwise stated, the range of the main welding variables was

arc current from 240-270 amp and travel speed from 10-11 ipm. The arc

length was held at 0.1 in., and helium shield gas was used at a flow rate of

100 cfh. It should be noted that porosity was not introduced by any of the modes

of operation. As a result it was necessary to conduct separate tests with

induced porosity. This was done by using a premixed tank of shielding gas

consisting of 5.5 percent hydrogen in helium.

c. Molten-Puddle Stirring

The general effect of stirring on bead shape was to reduce the

depth-to-width ratio of the bead. This was particularly noticeable at low

frequencies (10-30 cps) where a severe stirring effect can be obtained. In an

extreme case, a depth-to-width ratio of 0.25 was obtained as compared to 0.57
for an unstirred bead. It is believed that under these conditions the molten

puddle, due to its fluidity, is being excited into a resonant condition by the

stirring action of the magnetic field. As the frequency is increased and the coil

current (flux density) is reduced, the bead width decreases and penetration

increases toward the dimensions of the unstirred bead. Associated with the

bead effect at low frequencies is larger columnar grain g1:owth, viewed in the

transverse plane (x-z plane of Figure 32), as compared to corresponding

unstirred samples. This implies a possible difference in cooling rate due to
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the change in bead geometry caused by stirring. One result of this is an effect

on porosity as observed in tests where hydrogen was purposely introduced.

An increase in porosity level was found at lower frequencies under these

conditions. Under normal welding tests, stirring did not introduce porosity.

Increases in mechanical strength properties have been found as a

function of stirrer coil current. The most consistent trend occurred in the

high frequency range (60-300 cps) with statistically significant increases in

ultimate tensile strength near 5 percent. Attempts to relate this to grain

structure have not been successful. Subtle differences exist when viewing the

macrostructure in various planes but the relationship to strength is not obvious.

The general results indicate that a significant advantage that can be

obtained as a result of stirring under certain conditions is an increase in ultimate

tensile strength and yield strength. This has been found in the 60-300 cps

frequency. An additional advantage of this frequency range is that the depth-to-

width ratio of the bead is least affected and also porosity, if present, is not

increased due to stirring.

d. Plasma Oscillation

Of the two methods of operation, the longitudinal mode has least

effect on bead shape over the frequency range of 10-30 cps. In the transverse

mode, the major effect on bead contour is an increase in bead width with

increasing flux density. In both modes, increases in ultimate tensile strength

were found under certain conditions as compared to welds made with no plasma

oscillation. The greatest increases, 4 to 8 percent, were found for the

longitudinal mode. Here again, the correlation of g]:ain structure to strength

was not obvious. The general trend was toward large columnar grains in the

central portion of the bead (transverse section) for the welds subjected to

plasma oscillation. Induced porosity was also affected by plasma oscillation,

although only in the longitudinal mode. Under these conditions a reduction of

gross porosity was found, particularly at the low level of frequency, 10 cps.

Longitudinal plasma oscillation appears to offer the best advantage of
these two modes of operation. Improved mechanical properties have been

observed with no change in the bead depth-to-width ratio over the range of

variables tested. In addition, gross porosity is reduced when operating at the

low level of frequency, 10 cps. An observed surface characteristic in this

mode of operation is bead undercut, which has been reached at the high level

of flux density, frequency, and maximum energy input for the range of variables
covered in this test.
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e. Plasma Shaping

Plasma shaping had significant effects on weld bead contour.

Bead width was found to decrease with increasing flux density under all com-

binations of the variables tested. The effect of shaping on penetration, however,

is dependent on energy input conditions. Initial tests on 1/2-in. aluminum

(using helium) showed no significant changes in penetration. However,

additional tests on 1/4-in. aluminum (using argon) showed that at high speeds

and low energy input, an increase in penetration resulted with the application

of a shaping field. This trend reversed with lower speeds and near full penetra-

tion welds. Possible explanations may lie in the modified surface-to-volume

ratio of the molten puddle and the mode of heat transfer in the plate, which may

be two- or three-dimensional flow. Another factor is plasma force, which is

related to current density. The plasma cross section is modified due to

shaping, resulting in a redistribution of these forces.

A potential benefit of plasma shaping is the increased penetration that

may be obtained over an appropriate range of energy input to the weld. Within

this range, it is possible to maintain a given bead penetration at a higher speed.

This implies lower energy input to the weld and the possibility of higher strength

welds. Since penetration effect shows a variance with welding conditions, the

specific conditions for obtaining the above advantages require further delineation.

Some mechanical strength tests were performed; however, the conditions

were such that the shaping effect was not great and significant differences in

penetration did not exist. These results are not considered conclusive, and

additional tests would be required to obtain more complete information on the

mechanical strength response.

The amount of plasma shaping that can be obtained is limited to that

level of flux density that will cause arc "blowout" (e. g., in the longitudinal

direction). This is observed using helium gas and relatively long arc lengths,

about 0.25 in. Stable operation is possible at a 0.1-in. arc length but with

reduced shaping effect. Operation with argon shield gas and a 0.25-in. arc

length is possible; tests were made under these conditions. Although poor

bead surface and excessive undercut resulted, this was not considered pertinent

to determining the major effects of shaping on bead width and penetration.

f. Analysis and Evaluation of the AIRCO Study on Magnetic Arc

Shaper and Molten-Puddle Stirrer

Conclusions reached by the AIRCO investigators may be found in

the Appendix of this report. The integrator's discussion and evaluation follows.
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The work performed at AIRCO is interesting, andthe results appear to
be valid and well supported. However, judging from these results, the study
appears to be of little importance in its application to actual structures.
Although increased strengths were obtainedby puddle stirring andplasma
oscillation, the percentage increases appear to be too small to be of any real
significance in anybut the most critical ranges. A strength increase of 5, or
even 8, percent does not seemworth the addition andcomplication of special
devices near the torch. Suchan increase would be significant only if it brought
the weld quality from an unacceptableto an acceptablelevel.

10. Material Preparation

The problem of base-metal surface preparation and contamination

was studied at Illinois Institute of Technology Research Institute, under

Contract NAS8-20363. The program was divided into three phases. Phase I

was concerned with the determination of deleterious surface conditions. As of

15 February 1967, this was the only phase completed. Therefore, this report

covers briefly the work accomplished in Phase I. Only 2014-T650 aluminum alloy
plate 1/4-in. thick was used in Phase I evaluation. Phase II will involve the

development and standardization of analytical methods and measurements of

harmful surface conditions. Phase III will apply the results of Phases I and II

to produce surface treatments providing high weld quality.

a. Surface Preparations

There are currently an overwhelming number of accepted

methods of preparing aluminum surfaces for aerospace welding applications.

A systematic study of each particular one would be impractical. Therefore,

treatments representative of solvent degreasing, chemical cleaning, and

mechanical cleaning were employed in this investigation.

As-Fabricated Specimens. Surfaces of as-fabricated specimens were

heavily contaminated with oils, greases, ink, and foreign particles picked up

in fabrication, handling, and storage. Small blanks, approximately 1 by 1-1/2

by 1/4 in. were saw cut from the sheets and individually stored in tightly capped

jars for subsequent treatment. All further handling of specimens was by

Teflon-lined tongs, disposable tissue, or plastic gloves.

Degreasing was performed by a detergent and/or solvent soak. The

solvent was a reagent grade of benzene. Samples were immersed for a period

of 1 min, followed by a vigorous tissue wipe or warm air dry using a hair dryer.
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The original oxide film was removed by chemical cleaning (a l-rain
immersion in a 5 w/o NaOHsolution at 180to 190°F). The dark film that
formed was removed (desmutted) by a short dip in 50v/o HNO3. Agitated
rinsing in water andwarm air drying followed.

A number of additional treatments were included to produce surfaces
having a range of weld-defect potential. Thesewere boiling in water, storage
over water, coating with silicone grease, anodizing, and certain combinations
of these. Anodizing was donein an electrolyte of 15w/o H2SO 4 at 72°F and a

current density of 12 amp/ft 2 for periods ranging from 1 sec to 60 min. Water

rinsing and warm air drying followed.

Machined Specimens. Numerically programmed machining was done

with a Sundstrand 2-axis, Ore-30mnimil to obtain a reproducible strating

surface. The specimen chamber enabled the maintenance of a controllable

environment during machining. A dry air (20 percent relative humidity) or

a moist air (90 percent RH) atmosphere was used.

The master-specimen configuration for all machining is illustrated in

Figure 34.14 The five surfaces of each arm of the cross were face-milled to

remove about 0. 015 in. of material. Subsequent treatments were a

trichlorethylene degrease, water soak, chemical cleaning in NaOH and HNO a,

or anodize, as before.

b. Weld Tests

In order to determine the weld-defect potential of several surface

preparations, a simple weld test, highly sensitive to surface properties, was

used in conjunction with selected surface analysis methods.

Samples of a particular preparation were placed together on their

1- by 1-1/2-in. faces and spot welded at the midpoint along the interface. The

spot welds were made with the DCSP/GTA process, using the following

settings: arc current, 320 amp; arc voltage, 18 v; arc length, 1/16 in., gas,

high-purity helium (less than 10 ppm H2O) ; arc duration, 2 sec; gas preflow,

1 rain; and gas flow, 100 cfh. The resulting welds represented the crater

region of a horizontal weld. Depth of penetration was about 1/4 in.

This type of test is extremely sensitive to the properties of the butting

surfaces. The gases liberated from the surfaces by the heat of the arc are

trapped by solid contact along the fusion line. The pressure of gases generated

at the melting front is a function of the amount of surface contamination. At
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some level of contamination there is sufficient pressure built up to cause the

gases to "escape" into the weld pool. Porosity is formed by the rejection of the

dissolved gases during solidification and cooling. Heavily contaminated surfaces

exhibit porosity throughout the fusion zone, whereas cleaner surfaces are

characterized by porosity along the fusion line or complete absence of porosity.

The amount of oxide film present on the surfaces regulates the fusibility and

depth of penetration along the interface.

In the tests at IITRI porosity was evaluated by separating the pieces,

exposing the interface, and inspecting at 30X magnification. The results of

these preliminary weld tests are given in Figure 6, as a weld-defect potential

scale.

Weld-Defect Potential of Metal Surfaces. The most significant result of

this study was that, of the surface preparations examined, only the as-machined

surfaces had a zero weld-defect potential as shown in Figure 6. All of the

machined-only surfaces exhibited this characteristic. Surface roughness and

ambient moisture had no adverse effect within the limits of 50- and 200-pin.

finishes and 20 to 90 percent relative humidity.

Surfaces prepared in a moist environment should represent the greatest

defect potential of the as-machined specimens. The specimens that were

prepared in a 90 percent relative humidity had freshly machined surfaces

exposed to this moisture for a period of at least 5 rain during machining.

Without drying, these specimens were placed in tightly capped jars at about

60 percent relative humidity and stored for 10 to 20 days before welding. This

extended exposure to moist air did not result in porosity formation on welding.

Similar results were reproduced in two sets of the four as-machined conditions.

Any subsequent treatment of machined surfaces, and all surface pre-

parations used on nonmachined material, produced some degree of porosity.

Degreasing alone produced a rather harmful level of porosity, trichlorethylene

on machined surfaces being worse than benzene on as-fabricated material.

This was apparently due to residual solvent since the porosity was discolored,

with an oily or sooty appearance, and the surface water contents were very low.

Chemical cleaning and water rinsing produced a defect potential slightly

less than that of water rinsing alone on a fresh surface. Chemical cleaning

may reduce the number of adsorption sites and passivate the surface to a

degree. Prolonged storage over water (10 days or more) after chemical

cleaning had a negligible effect on welding.

Anodizing treatments or silicone coatings on chemically or mechanically

cleaned surfaces resulted in a further degradation of weld soundness. Surfaces
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anodizedfor up to 15 sec have a defect potential slightly greater than those
chemically cleaned. Longer anodizing treatments {1, 5, and 60 min), or a
silicone coating on surfaces, promoted cavernousporosity throughout the weld
bead. Fusion was inhibited across and along the interface. Suchwelds often
fell apart on removal from the vise.

It is not possible to make direct comparisonsbetweenmachined and
nonmachinedsurfaces at this stage. There wasno commonbaseline from
which to evaluate the absolute weld-defect potential of the subsequenttreatments
of each group. The differences in defect potential of a particular treatment
from one group to the other may be due to surface finish, surface activity, or
contamination burnished in the surface layers of as-received material which
canonly be completely removed by machining.

c. Surface Analysis Methods

Several methods of surface analysis were selected to obtain a

comprehensive characterization of the surfaces. These were radioactive

evaporation (Meseran), spectral reflectance, mass spectrometry, gas

chromatography, and spark emission spectroscopy. Many of the procedures

and results presented for each technique by IITRI are still preliminary rather

than proven and accepted. Each will require a great deal more experimentation

and refinement in Phase II of this program. In addition, still other methods

of analysis are being investigated during Phase II. For these reasons, any

present evaluation of these techniques may change and therefore they are not

discussed individually in this report. The IITRI report may be consulted for

detailed discussion of work to date on each technique. The data that are pre-

sented in the Phase I report indicate that gas chromatography and mass

spectrometry offer the most promise for reliable analysis.

d. Analysis and Evaluation of the IITRI Study on Surface

Preparations

The conclusions reached by the investigator in Phase I of the

study are included in the Appendix of this report. The integrator's discussion

and analysis of the program follows.

The work conducted thus far has resulted in interesting and important

findings. The most important conclusion is that simple machining is the best

surface preparation to avoid porosity in aluminum weldments. An extended

exposure of a machined surface to moist air did result in porosity formation
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on welding. Any subsequent treatment of machined surfaces, and surfaces

prepared on nonmachined material, produced some degree of porosity.

At this time, it is the integrator's opinion that future work should be

based on these results. This opinion, which could change as work at IITRI

develops, has the following basis. Although work on surface analysis techniques

is still preliminary, and some of these techniques show promise, none is yet

satisfactory or reliable. Each of them is highly sophisticated and will require

very closely controlled conditions and highly trained personnel. It would appear

that any of these techniques would create both economy and personnel problems

if used in a manufacturing process. In addition, their development will run into

considerable cost. In light of the conclusion that machining is a satisfactory

surface preparation, the question arises as to whether such development is

worthwhile. The integrator feels that it might be better to expend funds on

developing a method for machining just before welding. This might be accom-

plished through some device which could precede the welding torch during the

welding operation.
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APPENDIX

CONCLUSIONSDRAWN BYINVESTIGATORS
WORKING ON THE NINE PROGRAMS

COVEREDIN THIS REPORT

This appendix summarizes conclusions given in the final reports and the

interim report on the nine NASA sponsored programs that are covered in this

report.

The conclusions given in this summary are essentially those of the

investigators on the programs, although they may not be presented exactly as

in the original documents.

135



Research Study for Alternate Development
of Saturn Manufacturing Technology for Welding

Methods, Contract NAS8-20168, at Aero-Space

Division, The Boeing Company, Seattle, Washington

Objective

The major objective of the program was to establish a quantitative

relationship between atmospheric contaminants in the arc-shielding medium

and the magnitude, frequency, and level of porosity in 2219-T87 aluminum GTA
weldments.

Conclusions

Definition of Control Limits. Weld shielding-gas contamination is directly

related to the weld quality requirements of a particular production part. As a

potential guide for generating control parameters, some of the significant con-

tamination effects have been combined in chart form (Figure 3). The con-

centration points, relative to a contamination effect, indicate where occurrence

of a weld quality change is initially observed. In using this chart, shielding-

gas flow rate must be considered in setting weld contamination limits. This is

because changes in flow at a given contamination level cause variation in the

quantity of contamination introduced to the welding arc per unit length.

Source of Contamination. The determination of the quantitative effects of

gases on weldment quality provides an insight into the sources of contamination.

High-quality weldments would generally be expected with the present shielding

gas purity level if commercially purchased gas were the only consideration.

However, contamination originates from many sources, such as residual

impurities in the shielding gas; dirty or old connecting lines from the cylinder

to the torch; atmosphere influx; airborne particles; oil, water or atmospheric

leaks; and surface contamination, and the combination of these determines the

absolute level of the impurities introduced to a weldment. As demonstrated

in the program, it took 250 ppm of any of the contaminants studied to cause

significant quality changes. Should a 250-ppm limit be required for a production

process, exceptionally tight control would be necessary on the various sources

of contamination. Less than 1 mg/in, would be necessary to continuously

generate 250-ppm hydrogen in the shielding envelope. It is estimated that a

single fingerprint would result in a 750-ppm hydrogen increase in the area

contaminated and a significant increase in porosity. These estimates have been

based on the assumption that hydrocarbons on the surface of the weld joint would
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have the same effect as anequivalent amountof hydrogen being introduced as a
contaminant in the shielding gas. However, hydrocarbons on the surface are
expectedto be more detrimental because they enter directly into the arc area
without dilution, while only a portion of the shielding gas comes in contact
with the molten puddle, permitting absorption into the weld metal.

Water vapor or hydrocarbons from atmosphere influx appear to be an
unlikely major source of hydrogen contamination.

Individual-and Mixed-Gas Effects. This study showed that for highest

weldment quality, impurities in the arc should be maintained below the levels

achieved with a 250-ppm addition to shielding gas. A definition of the actual

production contamination levels would establish the feasibility of maintaining

such a low maximum limit.

In the case of porosity, addition of a contaminant, such as oxygen, could

improve weldment quality under certain conditions. It should be emphasized

that improved characteristics could be obtained only in isolated circumstances

and that the quality would generally be lower than the optimum low-contamination

condition.

The addition of hydrogen decreases the tendency for formation of undercut

due to weld-bead sag. Undercut is essentially eliminated at 250-ppm hydrogen

in the shielding gas without any perceptible change in mechanical properties or

porosity levels. The necessity to conduct a second pass weld, which causes a

significant decrease in weld strength, might feasibly be eliminated by hydrogen

addition if environmental conditions could be sufficiently controlled. It is

highly questionable at this time whether the high degree of control necessary

for hydrogen addition could be accomplished in a production application.

The program will be of significant value in arriving at shielding gas

control levels required for various production situations. In Saturn V welding

it would be desirable to establish the optimum control limit below 250 ppm.

However, for welding under field conditions, where contamination cannot be

carefully controlled, additions of specific contaminants might be used to improve

general quality. The data accumulated would be of value in identifying the

particular addition and control limits necessary to improve a weld

characteristic.

Statistical Treatment of Data. The statistical evaluation was a key factor

for the successful correlation and definition of quantitative contamination effects

on weldment quality. Mathematical relationships were established for calcula-

tion of a specific quality effect when contamination levels are known. The
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mathematical formula is limited in that the equation does not provide a universal
fit for all points within the ranges studied. More effort is necessary to improve
the mathematical expressions.

Methods of Evaluation. The radiographic and density analyses proved

most sensitive to determination of porosity change, while the metallographic

analyses provided a visual indication of the porosity levels. The fatigue

analyses showed a great deal of variation between specimens of the same

general quality. This indicates that future evaluation of fatigue like should be

based on more samples than were used for this study. The tensile analyses

did not show any appreciable change until large amounts of porosity occurred.
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Welding-Base Metal Investigation,
Contracts NAS8-11445 and NAS8-20303 at Battelle

Memorial Institute, Columbus Laboratories

Objectives

The objective of the final phase of this program under Contract

NAS8-11445 was to determine the contribution of several specially defined

factors, alloying content, hydrogen content, metallic impurities, and shielding

gas moisture content, to the weld defect potential of two experimental base

plate alloys, 2219 and 2014, and two experimental filler-metal alloys, 2319

and 4043.

The second phase of this program, under Contract NAS8-20303, was to

determine specifications for welding materials that would take into account a

factor called defect potential. Defect potential indicates the relative pos-

sibility of weld defects occurring in a weld made in a base metal of specific

composition.

Conclusions

The conclusions reached during the firstphase of this program, under

contract NAS8-11445, were as follows:

Effect of Four Factors. The relative strength of the relationship

between weld porosity (the only weld defect observed) and each of four factors

was determined primarily by statisticalanalyses. The factors are listedbelow

in decreasing order of their significance to porosity level.

1) Shielding-gas moisture content

2) Alloy content

3) Metallic impurities

4) Hydrogen content

An interactionexisted between the factors of alloying content and

metallic impurities such that the relationshipof weld porosity to the level of

one factor was dependent upon the level of the other factor. Increasing weld-

porosity levels were related to increasing base-plate hydrogen content, but an

139



interaction betweenthe material composition and hydrogen content prevented
anyconclusions regarding a definite cause and effect relationship. For X2014
baseplate, however, a hydrogen content of 1.8 ppm, by weight, was sufficient
to overshadowthe strength of the alloying content and metallic impurities to
causea high porosity level. For the filler wires studied, changesin the porosity
level were not significant for changesin the hydrogen gas contentof up to 1.9
ppm, by weight, except in one anomalous result where an increasing porosity
level was related to a decreased hydrogen content. The weld-defect potential
for welds made with the materials studied would generally be lowest whenall
four factors were low.

Pore Occurrence and Weld Composition. The composition of the weld

metal was related to the pore size and the pore distribution within the welds.

Segregation layers of alternately enriched and impoverished weld metal

occurred regularly within the weld in groupings that depended upon the weld

composition. Pores within the welds grouped themselves preferentially in the

impoverished segregation layers.

Hydrogen Content and Base-Plate Composition. The hydrogen content

of the experimental X2219-T87 and X2014-T6 base plate was quite independent

of the chlorination times and melting atmosphere. The hydrogen content of the

experimental base plate significantly increased as the plate composition was

increased from low alloying content and low metallic impurities to high alloy

content and high metallic impurities. The filler-wire hydrogen content was

controlled by the casting methods used.

Hydrogen Content and Porosity Level. As the hydrogen content of the

experimental base plate increased, the weld-porosity level of welds on the base

plate also increased. This was probably partly due to the interaction of the

material composition and hydrogen content. For 1/4-in. thick X2014 :_ plate,

hydrogen content of 1.9 ppm appeared to cause a high porosity level.

Increasing hydrogen content of the filler metals for the levels studied was not

related to increasing weld-porosity levels.

Arc Waveforms and Shielding Gas. The arc voltage and arc amperage
waveforms changed from smooth waveforms when the weld shielding gas

contained essentially no moisture to irregular waveforms with large numbers

of inflections when the arc shielding gas contained water vapor. The arc

voltage waveform also changed shape when contaminants were present in the

shielding gas.

:','The prefix "X" denoted experimentally prepared alloys to distinguish

them from commercial alloys.
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The results of the secondphase, under Contract NAS8-20303, indicated
that base-metal composition of commercial 2014and 2219alloys was no more
than a secondary factor in the formation of weld porosity for the conditions
studied. The following significant conclusionswere reached:

1) No single element, or combination of elements, was identified as

causing weld porosity. The composition of the 2014 and 2219 base

plate was related to the amount and size of weld porosity when the

arc shielding gas was contaminated with water vapor.

2) The composition variables studied which had a significant relation-

ship to weld porosity for welds in 2014-T651 base plate were, in

order of decreasing significance, an interaction of magnesium and

manganese and titanium, iron, and internal hydrogen content.

Increasing amounts of all of the elements except iron were related

to decreased weld porosity.

3) The composition variables studied which had a significant relation-

ship to weld porosity for welds in 2219-T81 base plate were, in

order of decreasing significance, zinc, magnesium, a manganese-

iron interaction, zirconium, internal hydrogen, and a manganese-

iron interaction. Increasing amounts of all of the elements except

the manganese-iron interaction were related to decreasing weld

porosity.

4) The use of radioactive hydrogen isotopes to study the occurrence of

hydrogen in the macrostructure and microstructure of aluminum

welds was feasible and can yield definitive results.

5) The hydrogen content of 2014 base plate was strongly related to

iron and zinc content. The hydrogen content of 2219 base plate was

strongly related to magnesium content. For both alloys, increasing

amounts of these elements were related to increased hydrogen
content.

6) The presence of increased intermetallics did not seem to have any

effect on weld porosity.

7) Pores occurred preferentially within the welds at solute-depleted

regions. Nucleation and growth of pores was not uniform across

the weld. There was evidence that volatilization of elements such

as magnesium formed pores or pore nuclei.
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8) Welds in 2014 aluminum tended to fracture inside the weld along

the fusion-zone boundary where intermetallics were concentrated

and where small epitaxial grains change to large grains. The 2219

aluminum alloy welds fractured diagonally across the weld.

9) Base-metal porosity occurs when gradual thermal gradients exist

in the base metal adjacent to the weld. These pores may be

associated with the CuA12 plus aluminum eutectic.

10) The parameters of arc voltage, arc current, and arc travel speed

do not completely define the actual welding conditions.
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Study of Mechanisms of Porosity Formation

in Aluminum Welds, Contract NAS8-11332,

at Missile and Space Division,

Douglas Aircraft Company

Objective

The objective of this program was to study the mechanisms causing

porosity in aluminum welds in terms of metallurgical phenomena as well as

welding parameters. Hydrogen is considered to be largely responsible for this

problem. The kinetics of this behavior are not well known. Thus, the major

emphasis was directed toward an attempt to determine the way in which porosity

forms and grows.

Conclusions

The following conclusions were reached:

1) Porosity formation in welds in 2219-T87 and 2014-T6 aluminum

alloys results from the absorption of hydrogen by the molten alloys

followed by the nucleation and growth of pores during solidification.

2) The porosity nucleation rate is a function of the inverse square of

the time required for the melt to reach the eutectic temperature.

3) The porosity growth rate is a direct function of the square of the

time required for the melt to reach the eutectic temperature.

4) The percent porosity, time to reach the eutectic temperature, and

number of pores in static welds are functions of the water vapor

content in the arc atmosphere.

5) The hydrogen content of the static welds is a function of water vapor

in the shielding gas, arc current and voltage, arc-exposure time,

and thickness of the plate.

6) The percent porosity, time to reach eutectic temperature, hydrogen

content, dendrite cell size, and number of pores in bead-on plate

welds are a complex function of water vapor in the shielding gas,

arc current and voltage, travel speed, and thickness of the plate

used in the bead-on plate welds.
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7) Free hydrogen in the arc atmosphere in equivalent amounts slightly

greater than the highest water-vapor contamination level employed

in this study did not produce porosity in the static welds.

s) Free hydrogen in amounts greater than 1475 ppm was required to

produce radiographically visible porosity in the bead-on plate welds

in 2219-T87 and 2014-T6 aluminum alloys.

9) Statistical analyses of the welding conditions and results of tests on

2219-T87 and 2014-T6 showed no difference in porosity within the

limits of experimental error.
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Study of Development of Saturn Manufacturing

Technology for Welding Methods and Techniques

to Reduce Hydrogen Porosity, Contract NAS8-20307,
at Southern Research Institute

Objective

The objective of this program was to investigate the feasibility of using

scavenging elements for eliminating hydrogen porosity in aluminum welds. The

program was designed to determine if these elements would attract hydrogen

and remove it from the vicinity of the weld or combine with it to form a harmless

inclusion in the weld. The latter phenomenon would be analogous to the role of

manganese in combining with harmful sulfur to form relatively harmless

manganese-sulfide inclusions in steel.

Conclusions

Under conventional inert-gas arc-welding conditions for aluminum alloys,

hydrogen porosity was not eliminated or significantly reduced by the getter

materials, which had been chosen as most promising on the basis of literature

describing hydride formation. Although the best of the getters did not appear

to be primary sources for porosity, they frequently increased the severity of

porosity arising from other sources of contamination, such as moisture in the

inert gas. With the exception of Ca, which was difficult to apply in its ele-

mental form, the four most promising getters on the basis of the literature

study (Ti, Zr, Ce, and Ca) were among the most effective getters in the

experimental work. However, other transition elements (such as Fe and Mn)

and some compounds were equally as effective in the one group of experiments

in which they were included.

It was recommended that fundamental studies of the comparative hydrogen-

attracting propensities of molten aluminum and other materials be performed

prior to further welding experiments. These studies should include considera-

tions of the form of the materials (finely divided powders, "atomized" liquids,

ionized compounds, etc. ) as well as the elemental content.
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Analytical and Statistical Study of the Effects

of Porosity Level on Weld-Joint Performance, Contract NAS8-11335,

at Martin Marietta Corporation, Martin Company

Objective

The objective of this program was to enable an inspector to describe

pertinent characteristics of a defect in a manner that allows precise prediction

of the expected mechanical properties of the weld joint. This information could

then be assimilated by a designer, and an intelligent decision could be made

regarding expected hardware performance.

Conclusions

The following conclusions were reached:

1) Weld behavior under transverse load is best predicted as a function

of the total cross-sectional area of the defects in the expected

plane of fracture.

2) For transverse tension testing, the decrease in strength from a

constant value (not necessarily the zero defect strength) is approxi-

mately proportional to the increase in cross-section area of the
defects.

3) A contaminated weld suffers a given reduction in transverse strength,

even though the contamination was insufficient to introduce a

measurable amount of porosity. This contamination effect may not

be contamination in the physical metallurgy sense, but shows

itself in fine porosity which is difficult to detect or evaluate by X-ray.

4) This reduced weld strength, caused by "contamination, " is the point

from which strength varies as porosity increases.

5} Existing weld acceptance criteria do not emphasize enough the

effect of very fine pores (less than 1/64 in. ) on mechanical

properties. Predicting behavior without considering such flaws

can lead to erroneous conclusions.
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6) The techniques used for obtaining porous welds in this investigation

appear to cause a greater incidence of very fine pores than would be

expected in normal production welding. This may have biased these

conclusions toward an overemphasis of importance of small flaws.

7) Improved nondestructive techniques are required for determining

the total cross-section area of flaws in the expected fracture plane.

Multiple X-ray shots appear to offer the best promise, but can

become difficult or unsolvable if the porosity pattern becomes too

complex.

8) Transverse tension fatigue testing is very sensitive to spherical

porosity. Fatigue life of a sample with any defect is lower than

fatigue life without defect, and continues to fall as the defect
increases in total area.

9) Welds which are loaded or stretched parallel to the welding direction

are not particularly sensitive, in their mechanical behavior, to

defects. Quite respectable strengths and elongations were obtained

with this mode of loading with defects which would ordinarily not be
accepted in a structure.

10) Sharp defects such as lack of penetration or lack of fusion exert a

marked influence on transverse mechanical properties, but a

negligible influence on longitudinal mechanical properties. These

defects were always found in the plane which is normal to the
transverse load.

11) Positions or patterns of multiple porosity arrays are influential to

mechanical behavior only to the extent that these patterns place a

greater number of flaws in a single plane which is normal to the

expected load.
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Development of Methods, Tooling Concepts, and Processes

to Control the Time-Temperature Characteristics
in the Weld and Heat-Affected Zone to Improve

Tensile Properties and Reduce Porosity in

Aluminum Weldments, Contract NAS8-I1930,

at Harvey Aluminum, Inc.

Objectives

The objectives of this program were to develop methods, tooling

concepts, and processes to control the time-temperature characteristics in the
weld and heat-affected zone, in order to improve tensile properties and reduce

porosity in aluminum weldments.

Shortening the time-temperature cycle through the critical range

(solidification and overaging) improves the properties of aluminum alloys in

general and copper-bearing aluminum alloys in particular, and can be extended

to apply to weldments in this material. The concept employed in this program

for accomplishing the shortened cycle consisted of impingement of a cryogenic

liquid on the weldment during welding, and balancing heat input and heat

extraction to produce thermal patterns which will result in improved weld

properties.

Conclusions

Tensile properties can be improved and porosity can be reduced by

properly controlling time-temperature relationships during the welding process.

Use of cryogenic liquid jets as a means of accomplishing the required

control is feasible. Limited experimental development performed in this

program resulted in improvements in yield strength up to 20 percent for welds

chilled by liquid carbon dioxide, with reductions in porosity over 100 percent and

drastically reduced warpage. Further work is warranted to obtain statistical

data and to refine the concept preparatory to its application to production

welding.

It was recommended that such work be performed to establish the limits

of the concepts for improvement in properties of welds on a statistical basis and

to provide sufficient information for development of criteria for equipment,

instrumentation, and procedures to be used in application of the concept of

welding of production parts.
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A Study of Inert-Gas Tungsten-Arc Welding

Process Transferability of Setup Parameters,

Contract NAS8-11435, at Lockheed-Georgia Company

Objective s

The major objectives of this research program were (1) to determine

and quantize the significance of welding variables in the inert-gas welding

process, and (2) to analyze the factors necessary for the successful transfer

of weld settings which produce welds with similar characteristics.

Conclusions

Data Analysis. With statistically designed experiments, computer

reduction, and analysis of data, it is possible to quickly solve problems and

explore the relationships of the variables far beyond our capability using

"conventional" techniques. One set of raw welding data may be used in different

combinations with computer analysis to simulate many additional welding

experiments and equipment modifications.

GTA Penetration. Within the range of the data, the variables that

account for a majority of the variation in weld penetration are travel speed,

electrode position, current, tungsten tip diameter, and gas purity.

GTA Ultimate Strength. The variables that account for a majority of the

variation in ultimate strength are travel speed, electrode position, voltage, and

gas purity.

GTA Porosity. Within the range of the data, the variables that account

for variations in porosity are inert-gas purity and time-temperature function.

Although these variables are the only ones entering the regression equation at

the 90 percent confidence level, they account for only a small percentage of the

variation in porosity. The predominant porosity variables are not identified.

Transferability, GTA. In order to transfer the following conditions must
be met:

1) Accurate instrumentation must be provided for the six basic GTA

welding variables of travel speed, electrode position, current,

voltage, gas purity, and electrode tip diameter, in order of

importance. The instrumentation should have high resolution and,

preferably, trace-type potentiometric recorders.
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2) The static variables, gaspurity, and tungsten-tip diameter must be
accurately maintained to set up standards.

Where the conditions aboveare met, alongwith duplicate conditions of weld-
joint preparation, tooling, andwelding position, duplicate trace recordings
indicate duplicate welds.

A changeof the welding control system from one system to another may
preclude the ability to successfully transfer a weld setting. For example,
settings that are stable and satisfactory whenwelding with the conventional
automatic "voltage" control system canbe transferred to the "Voltage-Proximity-
Current" system but the opposite is not always possible. However, duplicate
trace recordings of the four dynamic variables indicates duplicate welds
regardless of system change.

An accumulation of variation in the minor static variables suchas wire-
deposit rate, gas flow, gas purity, etc., will cause significant variation in the
resulting welds. Wire-deposit volume normally is not a critical variable;
however, the angle and position of entry into the weld puddle is extremely
sensitive. The filler-wire angle and position of entry must be duplicated in
order to duplicate welds.
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Design, Develop, and Fabricate a Magnetic Arc Shaper
and Molten Puddle Stirrer, Contract NAS8-11954

at Air Reduction Company, Incorporated

Objective s

The objectives of this program were to (1) develop a magnetic arc

shaping device and a magnetic molten-puddle stirrer and (2) evaluate the

usefulness of these devices for improving properties of GTA welds in aluminum

alloy. The program was conducted in four phases:

Phase I.

Phase II.

Phase III.

Phase IV.

Design and development of equipment

Fabrication and Testing

Weld Evaluation

Equipment refinement.

Conclusions

This report covers information presented in the Thirteenth Monthly

Report which summarizes the work conducted in Phase III. Conclusions

presented in the report are described below.

Through the use of the various magnetic field configurations, it was

possible to produce effects on weld bead shape, porosity, mechanical strength,

and grain structure. It was not within the scope of the program to determine

the exact mechanism of these effects, but it was concluded that a primary effect

of the magnetic fields is to change the bead geometry either by forces acting on

the puddle or by agitation of the puddle. This in turn modifies the cooling rate

and produces changes in grain structure, mechanical strength, and porosity.

The addition of puddle agitation also introduces a factor in determining resultant

porosity level.

Over the range of variables tested, some improvements can be obtained

from each of these modes of operation as summarized below.

1) By molten puddle stirring, higher strength welds can be obtained

for some optimum value of flux density. In addition, operation of

the frequency range of 60 to 300 cps has the least effect on bead

penetration, and porosity, if present, is not increased due to stirring.
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2) Of most interest in the plasma oscillating configurations is the

longitudinal mode of operation. For the conditions tested, increased

strength can be obtained, and also a reduction in induced porosity,

with no significant effect (i. e., no deterioration) on the bead depth-

to-width ratio.

3) Use of the plasma shaper can produce an increase in bead depth-to-

width ratio over an appropriate range of energy input to the weld.

A given penetration can thus be maintained at higher speed resulting

in the possibility of increased strength welds.
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Material Preparation and Instrumentation for

Welding S-1C Components, Contract DCN6-30-32061

Illinois Institute of Technology Research Institute

Objective

The ultimate objective of this research program, which is still in

progress, is to establish standardized methods of assuring high-quality surface

preparation for the welding of aluminum alloy S-1C components. To achieve

this objective, attempts were made to undertake a logically phased program

which includes the following phases of investigation:

Phase I. Identification and classification of deleterious surface

conditions

Phase II. Standardization of surface condition measurements

Phase III. Correlation of surface condition and weld quality

Conclusions

This report covers only Phase I of the program. Conclusions reached

during this phase are described below.

As-machined surfaces are characterized by a zero weld-defect potential.

Conventional surface treatments such as solvent degreasing, chemical cleaning,

and water rinsing promote the formation of porosity during welding. The

porosity-forming agents are adsorbed solvent, hydrogen, and water. Anodizing

and silicone coating produce extremely detrimental conditions for welding.

Prolonged storage in moist environments has a negligible effect on welding.

It is not possible to make direct comparisons between machined and

nonmachined surfaces at this stage. There is no common baseline from which

to evaluate the absolute weld-defect potential of the subsequent treatments of

each group. The differences in defect potential of a particular treatment from

one group to the other may be due to surface finish, surface activity, or con-

tamination burnished in the surface layers of as-received material which can

only be completely removed by machining.

Several measuring techniques show promise for quantitative analysis

of surface properties affecting weld quality.
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The mass spectrometer method of analysis is attractive in that it permits

an identification of all elements and compounds, up to atomic mass 300,

released from the surface. All surfaces examined were found to contain trace

amounts of C, CO, CO 2, and 02, along with hydrogen and water.

The data obtained with gas-chromatographic analysis are more reliable

and quantitative than others. The total vapors are removed from the specimen

so that equilibrium need not be achieved and maintained between the sampling

chamber and measuring apparatus during a test. Calibration of the system is

simpler and more reproducible than others. Known amounts of water are

flashed into the column material, and corresponding peak areas are determined.

Unknown quantities are determined by comparison with a plot of standardized

peak areas. The calibration of other techniques involves the introduction of

vapors into the sampling chamber.

The spark emission analysis technique has the greatest potential since

sampling is done under conditions related to the action of a welding arc on a

surface. On sparking, the adsorbed layers and oxide film are dissociated from

the surface thus permitting a sampling of the total surface. The other

techniques rely on much less energetic desorption and probably only measure

a portion of the contamination.
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